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Report Summary 
 
Litigation concerning firm-against-consumer discrimination has a long history in the U.S. In the 
past two decades alone, prominent corporations have paid more than half a billion dollars in 
settlements and fines for consumer discrimination cases  an amount that does not include 
additional sales losses due to bad publicity, damaging boycotts, or impaired reputation and 
brand. 
 
Here, Kalinda Ukanwa and Roland Rust seek to (1) uncover the mechanism by which service 
discrimination can emerge from seemingly rational service policy; (2) investigate how service 
discrimination interacts with competition and consumer word-of-mouth to affect profits; (3) help 
firms avoid losing profits due to discrimination.  
 
They develop a theoretical model that illuminates the critical roles that variation in consumer 
quality (i.e., their profitability to the firm) and measurement error in detecting consumer quality 
play in the emergence and magnitude of discrimination in service. Empirical evidence in two 
studies supports their theory that large variation in consumer quality reduces service 
discrimination while large measurement error increases service discrimination. 
 
Further, agent-based modeling demonstrates that service providers using a “group-blind” service 
policy that ignores group membership information about consumers have greater total profits 
over time than those with a “group-aware” service policy that uses group membership 
information in addition to individual attributes in service decision-making.  
 
Managerial implications 
Firms should consider the long-term benefits of switching to a service policy that does not use 
group membership information.  Although discriminatory (i.e., “group aware”) practices may 
seem profitable in the short term, they can damage service demand and profits in the long run. 
Because of strong word-of-mouth effects, consumers can learn from each other which firms are 
unlikely to provide favorable service conditions to them, and can switch their preferences to 
competitive alternatives.  
 
Firms that persist in using group identity information should invest in methods of measurement 
error reduction such as developing advanced methods of measuring consumer quality or more 
sophisticated predictive models that improve accuracy in predicting quality based on available 
measures. These firms could also increase exposure to consumer populations, which could 
improve information on the mean and variance of group quality.  
 
These findings apply to any service scenario where the service provider can segment consumers 
into groups based on some observable attribute; and where the service provider uses group 
membership as well as individual information to make a decision about the provision of service 
to the consumer. 
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Discrimination in Service

In May 2017, the city of Philadelphia filed a lawsuit claiming that Wells Fargo & Company

violated the U.S. Fair Housing Act. The lawsuit accused the bank of discriminatory lending

practices that resulted in excessive foreclosures of minority-owned properties in the city (Phippen

2017). Philadelphia’s lawsuit came on the heels of similar suits by Oakland, Los Angeles, Miami,

and Baltimore. Wells Fargo had already made a $175 million settlement with the U.S.

Department of Justice in July 2012 for alleged discrimination against minority borrowers from

2004 to 2009 (Broadwater 2012). Given its prior history, how was it possible that Wells Fargo

was addressing service discrimination again in 2017?

Neither Wells Fargo nor the financing industry is unique on this issue. Nor does service

discrimination concern only ethnicity or gender. Litigation concerning firm-against-consumer

discrimination has a long history in the U.S. In the past two decades alone, prominent

corporations such as Denny’s, Walmart, Macy’s, and Ally Financial paid more than half a billion

dollars in settlements and fines for consumer discrimination cases based not only on race,

ethnicity or gender (Elliott 2003; Gutierrez 2015; Koren 2016), but also on age (Silver-Greenberg

2012), geography (Schroeder 2017), social class (Kugelmass 2016), and occupation (Addady

2016). This amount does not include additional sales losses due to bad publicity, damaging

boycotts, or impaired reputation and brand. Societal shifts motivate an increased need for more

research on why discrimination in service still happens in the 21st century (Anderson and Ostrom

2015; Bone, Williams, and Christensen 2010; Hill and Stephens 2003). Social fissures created by

service discrimination have a direct impact on consumer and societal well-being (Bone,

Christensen, and Williams 2014; Crockett, Anderson, Bone, Roy, Wang, and Coble 2011).

Consistent with the sociological literature, we distinguish discrimination from prejudice

based on race, gender, sexual orientation, religion, or other consumer attributes. Prejudice,

stereotypes, and racism focus on internally-held attitudes, beliefs, and ideologies. In contrast, our

research focuses on discrimination as a decision outcome exhibiting unequal treatment of people
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based on the category to which they belong. Discriminatory behavior is not necessarily driven by

internally-held attitudes such as prejudice or bigotry (Pager and Shepherd 2008; Quillian 2006).

Some service providers are undoubtedly prejudiced. However, suppose a firm has no prejudiced

nor discriminatory intent, and its employees are not bigots? Under what conditions can service

discrimination still emerge? What is the impact on profits over time? Extant literature does not

provide a clear consensus on answers, indicating that the mechanisms producing service

discrimination and its impact on profitability are still not well understood. Where prior literature

primarily focuses on average attributes of consumer groups (e.g., average group wealth or average

education) in explaining discrimination, we investigate how the variation of attributes (e.g., the

distribution of consumer quality) has a demonstrable effect on the magnitude of service

discrimination. Furthermore, to the best of our knowledge, we are the first to investigate how

social and competitive dynamics emerging from service discrimination impact long-term profits.

Our research employs a mixed-methods approach. We first present a theoretical model of

how variance in consumer quality and magnitude of error in measuring quality impact the

magnitude of service discrimination. We validate the mechanism with empirical evidence from

human decision makers. We then extend the analytical model with an agent-based model to

investigate how competition and word-of-mouth emerging from service discrimination impact

profits over time. We find that group-aware service decisions are perhaps profitable in the

short-run. However, they can backfire over the long-run due to the effects of word-of-mouth and

competition. Large measurement error in detecting consumer quality exacerbates service

discrimination, while large variance in customer quality attenuates it.

The implications of this research are three-fold. First, it provides insight into how variance in

consumer quality and measurement error can drive the emergence of unintentional discrimination.

Second, it demonstrates how service discrimination’s interaction with consumer word-of-mouth

and competition damages profits. Third, this research suggests remedies that involve reducing

error in measuring consumer quality and increasing exposure to members of disadvantaged group

populations. We elaborate on these themes in the remainder of the paper as follows: first we
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discuss how our research expands extant knowledge on discrimination in service. We then present

our theoretical model and propose a definition of discrimination in service. We next present

empirical validation of our theory. Then, we present an agent-based model (ABM) to go beyond

the limitations of the analytical model: the ABM enables investigation into emergent

macro-phenomena from the micro implications of the analytical model and studies. With the

ABM, we investigate the long-term impact of service discrimination and its interaction with

competition and word-of-mouth. Finally, we conclude with a discussion of the managerial and

policy implications of our findings. In the next section, we discuss how this research contributes

to the literature.

EXTENDING THE LITERATURE ON SERVICE DISCRIMINATION

Transformative consumer research (Mick 2006; Pettigrew 2001) and transformative service

research (Anderson et al. 2010) contain extant literature on service discrimination from the

consumer’s point of view on topics such as financing options (Bone, Christensen, and Williams

2014), consumer racial profiling (Crockett et al. 2003; Evett et al. 2013; Harris et al. 2005), and

consumer discrimination against businesses selling “ethnic” French products in English-language

dominated parts of Canada (Ouellet 2007). In contrast, our work models service discrimination

from the viewpoint of the firm. There are two primary theoretical camps in which research from

the firm’s viewpoint lies. The first, the taste for discrimination literature, theorizes that firms may

include a disutility for interacting with members of certain groups in their objective function

which is not necessarily profit-maximizing (Becker 1957; Schelling 1969). A real-life example is

the Colorado bakery which in 2012 refused to provide a wedding cake to a same-sex couple

because of its religious-based service policy (Savage 2017). In contrast, our research aligns with

the second camp–the statistical discrimination literature (Aigner and Cain 1977; Arrow 1973;

Coate and Loury 1993; Phelps 1972). This literature assumes firms are profit-maximizing and do

not have a disutility for interacting with certain groups. Instead, the literature models

discrimination as a problem of incomplete information where decision-makers use observable
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attributes such as group membership to draw inferences about individuals.

Most prior models of service discrimination are static. We model discrimination dynamics,

which is relatively sparse in the literature (Fang and Moro 2011). This research gap is critical to

fill because of the persistence of service discrimination, despite improving societal policies over

time. Notable examples of dynamic discrimination research primarily examine the supply-side

impact (labor and employment) of discrimination on the profit function (Antonovics 2006; Bjerk

2008; Blume 2005, 2006; Bohren et al. 2017; Craig and Fryer 2017; Fryer 2007). Our study

differs from these studies in the following important ways. We study the implications of service

discrimination on demand-side dynamics (customer demand and word-of-mouth). Furthermore,

extant literature focuses on average group attributes in the formation of the firm’s beliefs about

the individual and group. In contrast, we examine how variation of intra-group attributes impacts

firm beliefs. Because discrimination is a problem of incomplete information, diagnosing the role

that intra-group variation plays in service discrimination is critical to understand. Variation

introduces uncertainty which can exacerbate the problem of incomplete information and impact

the degree of discrimination. We also differentiate ourselves from prior literature in examining

the impact on long-term profits of word-of-mouth that emerges from service discrimination. To

the best of our knowledge, ours is the first study to do so. In the next section, we present our

theory of how variation in intra-group attributes has both immediate and long-term impact on the

emergence of service discrimination.

A MODEL OF SERVICE DISCRIMINATION

Our theoretical model of service discrimination applies to a variety of service contexts that

meet two criteria: 1) consumers can be segmented into two or more distinct groups based on an

observable attribute; 2) service providers use both group membership and other individual

information to screen and determine level of service to the customer. Examples of services that

explicitly screen potential customers include higher education, financial services, real estate,

medical services, and membership-based services (e.g., country clubs). Examples of services
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where providers may implicitly screen customers include law enforcement, dining, hospitality,

and retail. A recent example occurred in April, 2018 at a Philadelphia Starbucks where two

African-American real estate brokers were arrested while waiting for a friend to arrive for a

meeting. The store manager who called police claimed that the men were trespassing. In a video

recording of the incident that went viral, other Starbucks customers can be heard protesting the

arrests. White social media commentators wondered aloud why they had not been arrested for

doing the exact same thing at Starbucks (waiting for friends before ordering). Subsequently, the

incident generated substantial negative publicity, organized protests, a shutdown of the

Philadelphia store, and a public apology media tour by the CEO of Starbucks who stated that

”practices and training led to the bad outcome” (McLaughlin 2018).

The initial portion of our model is consistent with the statistical discrimination theory of

Nobel Prize winner Edmund Phelps (1972). We refer the reader to that paper and Aigner and Cain

(1977) for details of their model and derivations. Although our model applies to many service

contexts, we ground our exposition in a specific bank lending context to facilitate intuition. We

model a loan officer’s decision regarding which applicants to give a bank loan. For simplicity, we

assume that the bank has one loan officer and that the loan amount and interest rate are

predetermined. The loan officer’s decision is only whether to offer the loan to the applicant.

We also assume that the loan officer is boundedly rational (March and Simon 1958): the loan

officer uses locally available information (i.e., the historical credit scores of applicants at his bank

only) and has finite cognitive and computational resources available to him in his

decision-making. He updates his beliefs, based on past information, but he is not forward looking

nor game-theoretic in his decision-making. He also does not have knowledge of his competitors’

information or beliefs. We believe bounded rationality is a reasonable assumption because of

what we learned from interviews with loan analysts at financial institutions. Their primary

sources of information used in loan decisions include the applicant’s credit score, credit history,

current income and assets, and a fourth category they called “character factors”. Character factors

include any qualitative information loan analysts could find about the applicant’s general
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character. For example, one interviewed loan analyst gave an example of a case where she found

evidence of an applicant’s history of gambling. Although the applicant had a sufficient credit

score, income, and assets, he was not offered a loan. Interviewed loan analysts were consistent in

stating that they used their institutional historical data from past applicants and loan recipients to

compare current applicants in the decision-making process. They did not use information from

competing financial institutions nor looked at future trends of applicant groups in making loan

decisions for applicants.

Let us assume that each applicant i is a member of one and only one group j ∈ {Adv,Dis},

an advantaged or a disadvantaged group. Advantage (A j) reflects key resources (e.g., cognitive

development, occupation, social position, reputation, wealth, or age) in the social stratification

process (DiPrete and Eirich 2006). In our model, advantage is defined at the group level and

represents the mean quality of the applicants within the group. However, individual applicant

quality can vary within a group. We assume there is inequality in advantage between the groups,

where

AAdv > ADis > 0(1)

Examples of differences in advantage between groups are upper versus lower social class, men

versus women, racial, ethnic, or religious majorities versus minorities, college-educated versus

less-educated, etc. For example, let us imagine that the applicants are segmented based on their

residential address. The advantaged applicants live in an affluent part of town while the

disadvantaged applicants live in a working-class area. We define inequality as

Inequality = AAdv−ADis.

The loan officer seeks to maximize profit by selecting applicants with sufficient quality, Qi j,

a latent attribute that can be interpreted as the expected profitability to the firm. We assume that

Qi j is normally distributed around the group mean, A j. The loan officer uses available information

about the each applicant (credit history, net worth, income, debt, employment history, etc.) to
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inform his service decision. This information is summarized in a single numerical score, Si j,

which is a noisy measure of Qi j. The relationships between A j, Qi j, and Si j are as follows:

Qi j = A j +υi j, υi j ∼N (0,σ2
q j
)(2a)

Si j | Qi j = Qi j + εi j, εi j ∼N (0,σ2
ε j
), where υi j ⊥⊥ εi j(2b)

Si j ∼N (A j,σ
2
q j
+σ

2
ε j
)(2c)

The loan officer wants to predict applicant quality, Qi j, using the applicant’s score, Si j.

Because Si j has error, the loan officer supplements the score with observable group information

A j to form an expectation of Qi j (e.g., the applicant’s zip code). Using Bayes rule and the

relationships established in Equation (2), the distribution of the loan officer’s beliefs about

Qi j | Si j is a weighted combination of information about the individual applicant (Si j) and about

the group she belongs to (A j). It can be conceptualized as a linear regression with the following

relationships:

Qi j | Si j = γ jSi j +(1− γ j)A j +δi j(3a)

E(Qi j | Si j) = γ jSi j +(1− γ j)A j(3b)

where δi j ∼N
(

0,γ jσ
2
ε j

)
and γ j =

σ2
q j

σ2
q j
+σ2

ε j

(3c)

The quantity γ j is known as the reliability of a measurement in classical score theory

(Novick 1965). It indicates how accurately the score measures the targeted latent attribute. The

score reliability has the following important properties:

0 < γ j < 1,
∂γ j

∂σ2
q j

=
σ2

ε j

(σ2
q j
+σ2

ε j)
2 > 0, and

∂γ j

∂σ2
ε j

=
−σ2

q j

(σ2
q j
+σ2

ε j)
2 < 0(4)

These properties highlight the impact that variation in quality (σ2
q j

) and score measurement error

(σ2
ε j

) have on the loan officer’s beliefs about consumer quality. Increasing variation in consumer
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quality or decreasing variation in score measurement error increases the score reliability (γ j). As

score reliability increases, the loan officer places increasing weight on the consumer’s individual

information (Si j) and less on group information (A j).

The top graph in Figure 1 (Tables and Figures follow the Reference section throughout)

visually displays an example of the model using a range of 450 - 650 for Si j (score) on the x-axis

and a matching range on the y-axis for expected quality values, conditional on score: E(Qi j | Si j).

The solid and dashed parallel lines are graphs of Equation (3b): the loan officer’s expectation of

quality of advantaged and disadvantaged applicants respectively. In this example, the two groups

have the same score reliability, γ = γAdv = γDis = .5., where AAdv = 723, and ADis = 640 . A

regression line coinciding with the gray line at the 45◦ arc has a slope of γ = 1. This is where Si j

perfectly measures Qi j without error. At this value, the loan officer has no need for group

information A j to form his expectation of customer i’s quality. As measurement error is

introduced, however, γ j decreases. As γ j→ 0, the regression representing the loan officer’s

expectation of applicant quality rotates clockwise towards a horizontal line with intercept A j. At

its limit, γ = 0 and the customer’s score Si j no longer has weight. The loan officer has a

monolithic belief about group j’s members: E(Qi j | Si j) = A j.

The model described thus far is consistent with Phelps (1972). However, the Phelps model

does not address service discrimination’s impact on firm profits. Because Phelps’ model is static,

it also offers no insights on the impact of dynamics. We expand the model by exploring these two

areas. The loan officer’s expected profit from a single loan is

E(πi j | Si j) = E(Qi j | Si j)−Qmin(5)

Qmin, assumed to be exogenous, is the quality of the marginal customer where loan profit is 0.

The bank is only willing to serve customers whose quality exceeds Qmin. If the loan officer uses

group information as well as the customer’s score to form expectations about each applicant, then

the loan officer uses a service policy where he offers a loan to applicants whose score, Si j, meets
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or exceeds a minimum score criterion for their group. We subsequently refer to this service policy

as the Group-Aware policy. We refer to the alternative policy of not using group information as

the Group-Blind policy where all applicants face a single score criterion, regardless of group

membership.

We derive the Group-Aware minimum score criterion for each group, Smin
j , by setting

Equation (3b) equal to Qmin and rearranging terms.

Smin
j = Qmin +(Qmin−A j)

(
1− γ j

γ j

)
(6)

In the top graph of Figure 1, the Group-Aware minimum score criteria of the example model are

located at the vertical dotted lines labeled “Advantaged Min. Score (Smin
Adv)” and “Disadvantaged

Min. Score (Smin
Dis )”. Note that these vertical lines intersect with a horizontal dashed line labeled

“Profit Threshold (Qmin)” at the top right corner of the graph. Each intersection point is precisely

where the expected quality of a member of the given group, conditional on score, is equal to the

Qmin that represents the marginally profitable customer.

In contrast, the Group-Blind loan officer aggregates all applicant information in terms of

advantage level and variation in quality to form his expectations of quality and a single minimum

score criterion, Smin
all (not shown on the graph). Because the errors associated with Qi j and Si j | Qi j

are independent of each other (see Equation (2b)), aggregation of the two groups has no impact

on σ2
ε . However, aggregation does impact the variation in customer quality and overall advantage

level. Let pAdv (pDis = 1− pAdv) represent the proportion of all applicants that are members of

the advantaged (disadvantaged) group. Using the equations for blended means and pooled

variance, the advantage, variance in quality, score reliability , and minimum score criterion of
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applicants under the Group-Blind policy is as follows:

Aall = pAdvAAdv +(1− pAdv)ADis(7a)

σ
2
qall

= σ
2
q + pAdv(1− pAdv)(AAdv−ADis)

2 > σ
2
q(7b)

γall =
σ2

qall

σ2
qall

+σ2
ε

> γ(7c)

Smin
all = Qmin +

(
Qmin−Aall

)(1− γall

γall

)
(7d)

Let f j(S) and Fj(S) represent the probability density function and cumulative distribution

function of group j scores. The loan officer’s expected profit (Π) under the Group-Aware and

Group-Blind policies are respectively:

E(Π | Smin
j∈Adv,Dis) = ∑

j∈Adv,Dis

∫
∞

Smin
j

p j E(Qi j | Si j) f j(S)dS
2−FAdv(Smin

Adv)−FDis(Smin
Dis )

(8a)

E(Π | Smin
all ) = ∑

j∈Adv,Dis

∫
∞

Smin
all

p j E(Qi | Si) f j(S)dS
2−FAdv(Smin

all )−FDis(Smin
all )

(8b)

Under conditions of incomplete information about true consumer quality, thus far the loan officer

has taken a profit-maximizing, non-prejudiced approach to forming a service policy. So where is

the discrimination in service? We formalize our definition of service discrimination (Di) as

follows:

Definition 1 Discrimination in service occurs when the service provider differentially treats two

equally qualified consumers (i.e., consumers with the same quality and score) just because they

are members of different groups. It is equivalently defined as the service provider’s change in

treatment of consumers i if consumer i changes group membership, conditional on maintaining
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the same quality and score. Discrimination (Di) is defined as

Di = E(Qi,Adv | S∗i ,Q∗i )−E(Qi,Dis | S∗i ,Q∗i )

= (γAdv− γDis)Q∗i +[(1− γAdv)AAdv− (1− γDis)ADis]

where S∗i = Si,Adv = Si,Dis and Q∗i = Qi,Adv = Qi,Dis

(9)

The top graph in Figure 1 shows by example the magnitude of discrimination for consumers with

a score S∗i = 550. From Equation (9), we can see that if γAdv 6= γDis, there are consumers with

quality level Q∗i = QD0 =
(1−γDis)ADis−(1−γAdv)AAdv

(γAdv−γDis)
who experience no service discrimination.

However, other consumers with quality levels higher or lower than QD0 experience discrimination

at magnitudes that increase in absolute value the further quality is from QD0. However, if

γ = γAdv = γDis, then the magnitude of discrimination is constant across all consumers.

Discrimination in Equation (9) then simplifies to Di = (1− γ)(AAdv−ADis).

We derive three key insights from this static model, which we formalize in the following

propositions (see Appendix A for proofs).

Proposition 1 A profit-maximizing service provider using a Group-Aware policy will set service

criteria where SDis > SAdv if γDis = γAdv) or if Qmin ∈ [ADis,AAdv]. If these conditions are not met,

the service provider will still set SDis > SAdv for all γDis ∈ (0,1) if the following conditions with a

threshold γ∗ = γDis(Qmin−AAdv)
Qmin−[γDisAAdv+(1−γDis)ADiv]

are true:

1. Qmin ∈ (0,ADis) and γAdv ∈ (0,γ∗)

2. Qmin ∈ (AAdv,∞) and γAdv ∈ (γ∗,1)

Under these conditions, disadvantaged customers must meet a higher service policy criterion

than advantaged customers to receive the same level of service.

Taking the derivative of Di in Equation (9) with respect to σ2
ε , σ2

q , and γ yields:

Proposition 2 Assume each group j ∈ {Adv,Dis} has equal σ2
ε , σ2

q , and γ . Discrimination (Di)

varies in σ2
ε , σ2

q , and γ as follows:
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1. Di increases in σ2
ε , the magnitude of error in measuring true customer quality.

2. Di decreases in σ2
q , the variation of customer quality within each group.

3. Di decreases in γ , the reliability of individual information (score) about each customer.

The intuition behind this proposition is that the greater the inequality between two groups, the

greater the difference will be in the loan officer’s assessment of two equally qualified customers

from each group. However, the greater the reliability of individual customer information is in

assessing quality, the less the loan officer will rely on group information to form his expectation.

Reliability of individual information improves when there is more information about members

within a group (i.e, more intra-group variation in customer quality) and when there is decreased

error in measuring the quality of individuals. Increased reliance on the customer’s

score/decreased reliance on group information leads to decreased discrimination.

Under these conditions, we find that it can be profitable to discriminate. The average per

period (short-term) profits are greater from a Group-Aware service policy than from a

Group-Blind one:

Proposition 3 Let there be two consumer groups represented by j ∈ {Adv,Dis} where one group

has greater advantage than the other (AAdv > ADis). Also, assume that the service provider

aggregates all customer information to set a single, group-blind minimum score criterion policy

Smin
all . Furthermore, assume that aggregation has no impact on on variation in measurement error,

σ2
ε . Then E(Π | Smin

j )≥ E(Π | Smin
all ). In other words, the service provider’s expected average per

period profits from a Group-Aware service policy is greater than one using a Group-Blind service

policy.

The discrimination model described thus far is static, similar to most prior literature.

However, consumer attributes can change over time. In the U.S., for example, a woman’s median

hourly earnings was 64% of a man’s in 1980. As of 2015, it was 83%. This pattern is consistent

for many disadvantaged groups in the US (Brown and Patten 2017). For this reason, it is
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important to understand how dynamics in advantage inequality can affect the dynamics of service

discrimination. Next, we consider a time dimension in our model, which is a departure from

standard statistical discrimination models such as Phelps (1972) and Aigner and Cain (1977).

To explore dynamics, we expand the time frame to two periods and add the subscript t to the

model (i.e., we now have A jt , Qi jt , Si jt , σ2
q jt

, σ2
ε jt

, γ jt ,Smin
jt , and Dit). Let us assume that each

group has a new set of applicants at t = 2 with an advantage level that may differ from the

advantage level of applicants from t = 1. Let p j1 + p j2 = 1, where p j1 is the proportion of all

group j applicants across time periods that applied at t = 1 and has advantage level A j1. The

proportion that applied at t = 2 is p j2 = 1− p j1 with advantage level A j2 = g jA j1 . The value

g j ∈ [0,∞) is the magnitude of change in group j advantage from t = 1 to t = 2. A g j = 1 implies

no growth in group j’s advantage between periods 1 and 2, g j < 1 implies a decline, and g j > 1

suggests growth. In the example about women’s pay relative to men’s over the last three decades,

gwomen > 1. For simplicity’s sake, also assume that each group’s new set of applicants has the

same magnitude of intra-group variation in quality and variation in measurement error as their

predecessors at t = 1 (i.e., σ2
q j1

= σ2
q j2

and σ2
ε j1

= σ2
ε j2

).

If the loan officer uses information from just the new set of applicants in t = 2 to form

expectations of quality, the only change in his belief relative to t = 1 is driven by g j, the change in

group advantage. There is no comparative change in variation in quality and measurement error

between t = 1 and t = 2, therefore γ j1 = γ j2. On the other hand, if the loan officer uses the entire

history of information about applicants from both periods to form expectations, then the

cumulative impact (represented by subscript c) as of t = 2 is as follows:

Lemma 1 Assume there are time periods t ∈ {1,2}. If a service provider pools all available

group j information across time periods to form his expectations of consumers from group j, then

the following is true about his beliefs of j’s advantage level, variation in quality, score reliability,
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and the minimum score criterion (where subscript c represent beliefs cumulative as of t = 2):

A jc(g j) = p j1A j1 + p j2A j2(10a)

= A j1
[
p j1 +g j(1− p j1)

]
σ

2
q jc
(g j) = p j1σ

2
q j1

+ p j2σ
2
q j2

+ p j1 p j2
[
A j1−A j2

]2(10b)

= σ
2
q j1

+ p j1(1− p j1)
[
A j1(1−g j)

]2 ≥ σ
2
q j1

γ jc(g j) =
σ2

q jc
(g j)

σ2
q jc
(g j)+σ2

ε

≥ γ j1(10c)

Smin
jc = Qmin +

(
Qmin−A jc(g j)

)(1− γ jc(g j)

γ jc(g j)

)
(10d)

From Equations (10b) and (10c), we see that as long as there is a change in a group’s

advantage from t = 1 to 2 (i.e., g j 6= 1), then j’s intra-group variance in quality and j’s score

reliability increases. These increases can either decrease or increase the group’s minimum score

criterion. If a group’s advantage increases, it is intuitive that its minimum score criterion would

decrease. After all, increasing group advantage implies that more members are qualified

(profitable) to the service provider for services. It also intuitively follows that decreasing group

advantage should lead to an increasing minimum score criterion. However, we also find

conditions where a group’s minimum score criterion can increase (decrease) despite its increasing

(decreasing) group advantage. This is formalized in the next proposition:

Proposition 4 The effect of growth or decline (g j) of a group’s advantage over time on the

group’s most recent minimum score criterion, Smin
jc depends on the group advantage levels relative

to Qmin. When a group’s advantage changes over time (i.e.,g j 6= 1), its minimum score criterion
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changes in the following ways:

(11) Smin
jc



> Smin
j1 when σ2

q jc
(g j)< (σ2

q jc
)∗ and


g j > 1 and Qmin < A jc(g j)

g j < 1 and Qmin > A jc(g j)

= Smin
j1 when g j = 1 or Qmin = A jc(g j)

< Smin
j1 otherwise

where (σ2
q jc
)∗ = 2p j1(1− p j1)A j1(1−g j)(Qmin−A jc(g j))

This means that when intra-group variation is not too high, a group can face unchanging or even

rising minimum score criteria for service despite the group’s improving advantage. The intuition

behind proposition 4 is that as score reliability improves, there is less uncertainty regarding the

score’s measurement of true quality. Since scores are more reliable, consequently the service

provider choses a minimum score criterion that draws closer to Qmin. At its limit where γ j = 1

which implies perfect score reliability, Smin
j = Qmin. If A jc > Qmin, any improvement in score

reliability reduces the amount of adjustment needed, which thereby increases the minimum score

criterion towards Qmin. On the other hand, if A jc < Qmin, any improvement in score reliability

decreases the adjustment needed and thereby reduces the minimum score criterion.

If the two groups differ in their rates of growth in advantage, then there are additional

implications on discrimination. As is the case of men and women’s growth in pay rates over the

past three decades, let us assume that gAdv < gDis: the disadvantaged group has a faster advantage

growth rate than the advantaged group. We established from Equation (9) that if a group grows in

advantage, the variance of quality of its members increases. Increased variance in the

disadvantaged group implies that γDis,2 > γAdv,2 (recall that the groups had equal score reliability

at t = 1). This has the effect that the loan officer places greater weight on individual information

for the disadvantaged group than he does for the advantaged. The regression for the

disadvantaged rotates closer towards the 45◦ line where Si j perfectly measures Qi j.

The bottom graph in Figure 1 displays an example of the effect of advantage growth for the
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disadvantaged group. The bottom graph represents the service provider’s expectations at t = 2.

The advantaged group has remained unchanged relative to t = 1 (the top graph). However, the

disadvantaged group has grown in advantage, resulting in a change in score reliability from a

γDis,1 = .5 in t = 1 to a γDis,c = .8 in t = 2. The minimum score criterion for the disadvantaged

group has subsequently increased by 15 units to 615 in t = 2.

This change in the score reliabilities of each group due to changes in variation has a

demonstrable effect on the magnitude of discrimination against the disadvantaged group.

Although the disadvantaged group has grown in advantage, the inequality gap shrinks for only

some of its members. Where Q∆D=0 is the quality level where the magnitude of Di1 = Di2,

disadvantaged applicants with quality Qi,Dis on one side of Q∆D=0 actually experience greater

magnitudes of discrimination than they did in the prior period. Disadvantaged members on the

other side of Q∆D=0 benefit from their group’s growing advantage–discrimination is less than its

magnitude at t = 1. This insight brings us to our final proposition.

Proposition 5 Let ∆γ j = γ j2− γ j1 and ∆A j(1− γ j) = A j2(1− γ j2)−A j1(1− γ j1). A change in the

advantage of a group can change the degree of discrimination that members of the disadvantaged

group experience over time. The quality level for which the magnitude of discrimination is the

same in both time periods, Q∆D=0 =
∆ADis(1−γDis)−∆AAdv(1−γAdv)

∆γAdv−∆γDis
, the magnitude of discrimination

that customer i experiences at t = 2 can be less or greater than at t = 1. The conditions where the

magnitude of discrimination changes over time t has the following relationship:

1. Di2 > Di1 if

(a) ∆γAdv > ∆γDis and Qi j > Q∆D=0

(b) ∆γAdv < ∆γDis and Qi j < Q∆D=0

2. Di2 < Di1 if

(a) ∆γAdv > ∆γDis and Qi j < Q∆D=0

(b) ∆γAdv < ∆γDis and Qi j > Q∆D=0
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Proposition 5 demonstrates that reducing the inequality gap does not reduce discrimination for

everyone. When a disadvantaged group grows in advantage faster than the advantaged group, its

members with sufficiently high quality level can experience reduced discrimination over time.

However, disadvantaged customers of sufficiently low quality can actually experience greater

discrimination over time, even though the inequality gap is shrinking. Proposition 5 also asserts

the reverse. Paradoxically, a growing inequality gap can reduce the magnitude of experienced

discrimination for some disadvantaged members. When the inequality gap grows (the growth for

the advantaged exceeds the disadvantaged), disadvantaged customers of sufficiently low quality

can experience reduced discrimination. The bottom graph in Figure 1 displays an example of the

effect of Proposition 5. Note that the magnitude of discrimination for consumers with a score

S∗i = 550 is demonstrably greater than it is for them in t = 1 (top graph).

This completes our analytical model of service discrimination, which provides insight on

how variation in customer quality and measurement error and have direct impact on the

magnitude of discrimination in service. It also highlights how changes in group advantage over

time can change not only the variation in the quality of the group, but also the magnitude of

discrimination. However, we now need to understand whether our analytical model is empirically

realistic and valid. In the next section, we test our propositions with a set of empirical studies to

understand if real behavior is consistent with our theory.

EMPIRICAL VALIDATION

To test the empirical validity of our theory of service discrimination, we designed two

studies to test propositions presented in the prior section. For our first study, we recruited 400

participants (56.4% male, 5.5% between 25-34 years old, all U.S. residents) on Amazon mTurk.

Study 1 tests the first three propositions under conditions where the advantaged and

disadvantaged groups are constant in advantage over time. For our second study, we recruited 409

participants on Amazon mTurk (54.0% male, 45.7% between 25-34 years old, all U.S. residents).

In Study 2, advantage is held constant for the advantaged group while we allow the disadvantaged
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to grow monotonically in advantage (approximately 1.36% after each round) during the study. By

the last round, both groups are equal in advantage. This condition enables us to test the last two

propositions regarding dynamic inequality. This specification implies that γDis > γAdv over time,

which meets the conditions of Proposition 5.1 (b) and Proposition 5.2 (b).

Each study had a 2 (group information: present vs. absent) X 2 (true quality variation: low

vs. high) X 2 (credit score error variation: low vs. high) between-subjects design. Participants

were randomly assigned to one of the eight conditions. We conducted the studies using Qualtrics

survey software customized with JavaScript programming to dynamically update stimuli based on

participants’ prior decisions. Each participant played the role of a bank loan officer in 10 rounds

of a lending game, which took on average 40 - 60 minutes to complete. The participant reviewed

10 loan applicant profiles for each of 10 rounds. Each profile revealed the applicant’s

identification number, address, and credit score. All applicants are members of one of two groups:

either a square group or triangle group. We used these abstract symbols to represent groups in

order to remove potential for any prior bias. Unknown to participants, one applicant group was

the advantaged group whose average quality and credit scores were higher than the other group.

We counterbalanced between subjects the designation of whether the squares or triangles were the

advantaged group. In the Group-Aware (Group-Blind) condition, the study participant saw (never

saw) of which group the applicant was a member.

The game asked the participant three questions about each applicant profile: 1) whether or

not to offer the applicant a loan; 2) how confident the participant is in her decision; and 3) how

confident the participant is that the loan will be repaid by the applicant. At the end of each game

round, the game presented the participant a table displaying outcomes of the participant’s loan

decisions. The participant earned 30 Credit Units ($.075) on any repaid loans and lost 30 on loan

defaults. After conclusion of the 10-round game, the participant answered survey questions about

demographics and risk-aversion. The participants also earned a flat $3 fee for completion of the

game. In total, we spent almost $10,000 on the two studies (including compensation to

participants, pretests, software development, and Amazon fee). We gave relatively large mTurk
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compensation to ensure that participants took the task seriously and to test true decision-making

behavior with financial consequences. Furthermore, we wanted to ensure participants were

properly motivated and compensated to complete this lengthy study.

Randomly generated credit scores and loan repayment outcomes in the study were based on

2006 and 2010 Equifax data on mortgage applicants (Bhutta and Canner 2013). The credit scores

have a range of 300 - 850 in possible values, consistent with retail credit markets. We set

Qmin = 620 (unobserved by participants), which is the value employed in the Equifax Risk report.

Note that Qmin is below the advantage levels of both groups in the studies (AAdv = 723 and

ADis = 640). Between study conditions, we manipulated the variance in applicant quality (σ2
qt)

and measurement score error (σ2
εt) to be high or low values1. Participants did not see these values,

but they directly influenced the credit scores on each applicant profile. Within each study

condition, squares and triangles had the same intra-group variance in quality and measurement

error. All participants in a study condition saw the same sequence of profile information. Our

goal was to ascertain the impact of these conditions on our three dependent variables: probability

of offering a loan to an applicant, confidence that the applicant will repay the loan (measured on a

0 - 100 point scale with 100 implying complete confidence), and profit made by the participants

on loans offered. Next, we discuss how we test and measure the data collected to determine

empirical validity of our theory.

Tests and Measures

Because the empirical study has repeated measures of participant response, we analyzed the

data using hierarchical models to address likely intra-participant correlation of responses. Level 1

unit variables were study conditions and attributes of applicant profiles while participant dummies

were at level 2. We used an OLS regression to test Proposition 3 because the dependent variable

was simply total profits earned by each study participant. Dependent variables were a dummy

indicator for whether the participant offered a loan to an applicant (Loan) and his confidence that

1standard deviation=45.5 (Low) vs. 80.2 (High), based on the Equifax data
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the applicant would repay a loan (Repay, based on a 100-point scale). Study condition variables

were dummy indicators for the Group-Aware condition (Group), low variation in applicant

quality condition (QualityLowVar), low measurement error condition (ScoreLowVar), and Study

2: Dynamic Inequality (Dynamic). We also included continuous variables for study round (Round

and Round2). Applicant profile variables were applicant quality, score, and group membership

(Quality Score, Disadvantaged dummy).

To test Propositions 1 and 4, we modeled participant p’s decision to offer a loan to applicant

i from group j with a hierarchical logit.

Logit[Loan]pi j = Xpi jβ10 +β0p + εpi j

β0p = υ00 +ξ0p

(12)

Although we did not observe each participant’s implicitly determined minimum score criterion

for applicants, we reason that if there is a higher score criterion in operation for disadvantaged

applicants, we should observe a lower likelihood of loans offered to disadvantaged applicants

than to equally qualified advantaged applicants.

To test Propositions 2 and 5, we estimated the following hierarchical linear model. The

dependent variable is Repay, which is participant p’s response to the question “How confident are

you that this applicant will repay the loan?”.

Repaypi j = Xpi jβ10 +β0p + εpi j

β0p = υ00 +ξ0p

(13)

Because we did not observe each participant’s implicitly determined expectation of the applicant

i’s quality, conditional on score, we used this measure as a proxy. Our reasoning is that if there is

discrimination against disadvantaged applicants, we should observe lower average Repay values

for disadvantaged applicants than for equally qualified advantaged applicants.

Tests of Propositions 1 and 2 use the same design matrix, Xpi j which contains dummy
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variables for Disadvantaged, study conditions (Group, QualityLowVar, ScoreLowVar), and their

interactions. The design matrix also contains continuous-measure variables that control for

applicant quality (Quality), score (Score), and their interaction. The final two variables included

in the design matrix control for time and learning effects (Round, Round2). For Propositions 4

and 5, we compared Study 1 (static inequality) and Study 2 (dynamic inequality) responses of

participants from the study condition where group information is available. We modified the

design matrix used for Propositions 1 and 2 in the following way: we dropped the Group dummy,

added a dummy for Dynamic (indicating Study 2), and interacted Quality with Dynamic,

Disadvantaged, Round, and Round2 for Proposition 2. All continuous variables were first

standardized before estimation; therefore, effects associated with these variables should be

interpreted in terms of the impact of one standard deviation away from the mean. We used an

OLS model to test Proposition 3. We regressed participant p’s total game earnings on Groupp.

We included ScoreLowVar, QualityLowVar, and their interaction to control for study conditions.

A positive coefficient on Group would indicate that utilizing group information in addition to

individual information is more profitable than just individual information in making service

decisions. All models were estimated with standard maximum likelihood methods using the panel

data set of participant responses from the two studies. We now turn to discussing results in the

next section.

Empirical Results

Figure 2 (see after Reference) visually summarizes some of the main results from both

studies. The graphs display quality levels of applicants (x-axis) vs. loan offer rates (y-axis). Loan

offer rates are the mean percentage of applicants, conditional on quality, that were offered loans

by participants across all study conditions. The left column of graphs displays Study 1 results and

the right column displays Study 2 results. The top row of graphs results are under the study

condition where group membership information is present (Group-Aware) condition. The bottom

row results represent the group information is absent (Group-Blind) condition. In both graphs,
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there is a black vertical line labeled Qmin which, unknown to participants, is the minimum

applicant quality level needed in order for the participant to earn profit on a loan. All applicant

quality values to the right of Qmin in the graph are profitable, and those to the left are unprofitable.

The curves in each graph with square markers represent loan offer rates for advantaged applicants

while those with triangle markers represents disadvantaged applicants. Because the raw data are

visually noisy, we smooth the data with Gaussian LOESS curves (Cleveland and Devlin 1988;

Rust and Bornman 1982). We use quadratic polynomials with smoothing parameters

automatically selected to minimize a bias-corrected AIC (Hurvich, Simonoff, and Tsai 1998).

These parameters range from 0.941 to 0.946 and are robust to different degrees of polynomial and

to an alternative method of optimized parameter selection (generalized cross-validation). Note

from the graphs that in general, loan offer rates for advantaged applicants dominate those for

disadvantaged. Although our definition of discrimination is conditional on quality and credit

score, the gaps between the advantaged and disadvantaged curves give an indication of the

magnitude of discrimination between equally qualified advantaged and disadvantaged applicants.

One can see that the gaps are greater in the Group-Aware graphs than in the Group-Blind graphs.

Table 1 (see after Reference) summarizes the key results of the two studies.

Study 1 and Study 2 results indicate that participants in the Group-Aware condition under

both static and dynamic inequality scenarios exact a higher minimum score criterion for

disadvantaged than equally qualified advantaged applicants. Participants in the Group-Aware

condition were less likely to offer a loan to a disadvantaged candidate than to an equally qualified

advantaged applicant (Study 1: −1.013, p < .001; Study 2: −1.837, p < .001). This finding is

consistent with Proposition 1. Studies 1 and 2 are also consistent with Proposition 2. When group

information is absent, we found no statistical difference in the repayment expectations of equally

qualified advantaged and disadvantaged candidates. However, when group information was

present and measurement error was low, we find that participants had an increased Repay

evaluation of disadvantaged applicants; this implies a smaller difference in evaluation between

equally qualified disadvantaged and advantaged applicants (Study 1: 2.982, p < .001; Study 2:
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3.358, p < .001).

On the other hand, when variance in applicant quality was low, participants had a decreased

Repay evaluation of disadvantaged applicants in Study 1 (−6.383, p < .001). In Study 2, the

effect of lower variance in applicant quality is not significant when considering all rounds of the

study (.565, p is n.s.). However, when considering only the second half of the study, the effect

approaches significance and has the expected sign (−1.499, Ha < 0 p = .051). One possible

explanation for this result could be that growth in the disadvantage group’s level of advantage

effectively increases the variation in quality for both low and high variance conditions of the

study. Perhaps participants perceived both conditions as high variance. The results suggest that

under conditions where growing advantage (and thus expanding variation in quality) is present,

participants needed more time to learn the distinctions between the groups. Furthermore, given

that Study 2 has a change in inequality between the applicant groups in each round, it is

effectively a 2X2X2X10 study. Statistical power in this study may be an additional factor. This

opens up more questions about the long-run effects of time on the perception of variance and its

impact on discrimination outcomes. This offers an avenue of interesting future research.

Overall, we do not find statistically significant support for Proposition 3 in either study.

Although the coefficient on the Group dummy has the expected sign, it is not statistically

significant (Study 1: .152; Study 2: .092). We could not say with confidence that, on average,

using group information is more profitable than ignoring group information. In fact, we found

only one set of conditions where using group information does have a statistically significant

profit impact. In Study 1 (where inequality is static), when both variance of quality and variance

of measurement error are low, using group information actually hurts total participant profits

(−.344, p < .05). This could be because the credit scores are already very diagnostic in this

condition since there is low variation in quality and measurement error. Perhaps group

information under these conditions can mislead the participant, especially when its implications

are in conflict with those of the credit score.

Study 2 also demonstrates that dynamics in advantage levels can change minimum score
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criteria and change the magnitude of discrimination exhibited. Recall that in Study 2,

Qmin = 620 < ADis,1 = 640 < AAdv,1 = 723. Given that throughout the study, advantage levels of

both groups exceed Qmin and that the disadvantaged are growing in advantage, we would expect,

based on Proposition 4, that the minimum score criterion for disadvantaged applicants should rise

likelihood of loan offers should fall over time when group information is available. We find that

the coefficient on the interaction of Dynamic, Disadvantaged, and Round is consistent with this

prediction (−.729, p < .05). Despite the fact that the disadvantaged grow in advantage with each

successive round in the game, Study 2 participants were indeed less likely than Study 1

participants to offer loans to equally qualified disadvantaged candidates over time.

The bottom two graphs in Figure 2 give a visual example of how dynamics in group

advantage can impact the direction of loan decisions in the Group-Aware condition. The graphs

display the mean loan offer rates to applicants whose latent quality and credit scores are within

the 650 - 700 range. We selected this quality and score range because it contains the largest group

of comparably qualified applicants in the study. The left graph shows Study 1 loan offer rates, and

the right graph shows the same information from Study 2. Advantaged applicants are represented

by the curve marked with squares; disadvantaged are marked with triangles. Because their latent

quality values exceed Qmin = 620, all applicants in this group should ideally receive loans. Using

the loan offer rates to advantaged applicants as a point of comparison, one can see that in the

static condition, the rate of loan offers to disadvantaged applicants gradually decreases during the

progress of the study. In contrast, in the dynamic condition the gap between the advantaged and

disadvantaged candidates is greater.

Furthermore, we find that increases in discrimination over time are not uniformly

experienced across members of the disadvantaged group. Recall that our study conditions match

the conditions of Proposition 5 sections 1b and 2b. Under these conditions, we predict that

disadvantaged members with lower (higher) quality scores would face increasing (decreasing)

discrimination in subsequent rounds. We find that the coefficient on the interaction of Dynamic,

Disadvantaged, Round, and Quality is not significant when considering all rounds of the study
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(−.288). However, when examining the second half of the study (Rounds 6 - 10), the results are

significant and support Proposition 5 (27.210, Ha > 0 p = .042). As the disadvantaged group

improved in advantage over time in the study, higher quality disadvantaged applicants

experienced less discrimination while lower quality applicants experienced more over time. The

implications are that although decreasing inequality between groups can lead to reduced

discrimination against some disadvantaged, it can also lead to increasing degrees of

discrimination against other disadvantaged.

To summarize, the findings from the analytical model, validated by empirical evidence,

suggest that when a service provider has access to observable group membership information, the

service provider will be less discriminatory against disadvantaged consumers from a group with

high variance in quality than they will against a disadvantaged group with low variance in quality.

The service provider will also be less discriminatory when the error in measuring consumer

quality is low. The findings demonstrate that variability in group members as well as

measurement error in detecting quality are each a driving mechanism of discrimination. The

findings also show that the service provider will exact a higher minimum score criterion to

provide service for disadvantaged consumers than for equally qualified advantaged consumers.

Furthermore, the results show that dynamics in advantage can play a critical role in service

discrimination outcomes. If a disadvantaged group improves its advantage over time (which

reflects the reality of many U.S. disadvantaged groups, such as women and minorities), there are

certain conditions where the minimum service score criterion can increase despite the group’s

advantage improvement. Moreover, although the disadvantaged group as a whole may be

improving in advantage, our results show that not everyone will benefit. While some members

will experience decreasing discrimination as a result of the improved advantage, others will

experience increasing discrimination as a result.

However, the analytical model and empirical studies do not fully address the system

complexity over time of discrimination in service and its impact on demand and profits. We next

examine the impact of competition, word-of-mouth (WOM), and social factors that can influence
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variation in customer quality (assimilation, population mix) on the dynamics of service

discrimination and on demand and profits. To investigate these, we turn to agent-based modeling.

Agent-based modeling (ABM) is a research tool that enables the researcher to simulate the

behavior and interactions of autonomous individual agents (people, organizations, etc.) in order to

analyze emergent macro phenomena. It is often used to understand the dynamics of collective

patterns in a complex system (Delre, Broekhuizen, and Bijmolt 2016a; Goldenberg, Libai, and

Muller 2001b, 2010; Rand and Rust 2011). By using both ABM and analytical modeling, we

leverage the strengths of each (full parameter space exploration for analytical modeling, modeling

of complex interactions for ABM) to answer our research questions more fully than by using one

or the other alone (Peres and Van den Bulte 2014). Using ABM in conjunction with studies can

produce new insights through the revelation of macro-level, long-run implications of micro-level

observations derived from the studies (Smith and Rand 2017). ABMs can be used for two

different purposes. One purpose is to use an ABM as an extension of an econometric model. In

such applications, careful validation of all the input parameters is essential (e.g., see Libai,

Muller, and Peres 2013). An alternative use, however, is to use an ABM as an extension of an

analytical model in order to show directional results of how variables affect outcomes (Delre,

Panico, and Wierenga 2016b). This reflects our purpose. However, we still strive to use realistic,

data-justified values where possible. In that spirit, in the next section we discuss our use of ABM

to investigate the long-run implications from our study findings.

AN AGENT-BASED MODEL OF SERVICE DISCRIMINATION

To analyze the dynamics of discrimination in service, we employ a 28 full factorial design

(256 separate simulations) in the agent-based model (ABM). The ABM models supply and

demand for loans in a simulated city. The city contains four competing banks and a population of

200 consumers comprised of people from an advantaged or disadvantaged group. Banks and

consumers are randomly distributed throughout the geographic area. Based on the distributional

assumptions used in the studies, the ABM randomly assigns quality and credit score attributes to
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consumers. Each bank has one loan officer. Two randomly determined banks have a

Group-Aware service policy (a minimum score criterion for each population group) while the

others have a Group-Blind service policy (a single minimum score criterion). This allows us to

examine competition and its impact on consumer demand and firm profits over time in the

ecosystem. Becker (1957) theorized that market forces can ultimately drive out firm

discriminatory behavior if non-discriminatory competitors exist. We test the spirit of this theory

by including firms in the ABM ecosystem that employ a group-blind minimum score criterion. In

each time period in the ABM, a random selection of consumers applies for a loans. These

applicants select one and only one bank in any given period based on their utility for the bank (to

be elaborated on shortly). Subsequently, each bank loan officer offers loans to applicants with

scores exceeding the minimum score criterion determined by bank service policy. Loan officers

use historical data of past applicants to update their beliefs about group advantage levels and to

set new minimum score criteria in each period. Each applicant retains a history of loan

applications and rejection/acceptance outcomes. Banks cannot observe each applicant’s history,

but consumers can observe the application history of other consumers in their network.

The ABM uses combinations of high and low values for each of the eight factors. Three of

the eight factors come directly from the analytical model and studies: intra-group quality variance,

measurement error variance, and degree of inequality (σ2
qt , σ2

εt , and Inequalityt = AAdv,t−ADis,t).

We use the same values and decision rules employed in our empirical studies. By doing so, we

directly link the empirical study results with the ABM, thereby enabling us to gain insight on the

long-run, macro implications of micro-level study observations. Consistent with the empirical

studies, we test both static and dynamic inequality conditions over time. In simulations with

dynamic inequality, we allow ADis to grow at a rate of .16% per period2 while holding AAdv fixed.

The remaining five factors are assimilation, population mix, number of applicants, and two

dimensions of word-of-mouth (WOM). Assimilation can be thought of as adopting observable

characteristics or cultural practices associated with the advantaged group. We expect that greater

2Based on the annual growth rate of average Black wealth relative to Whites from 1967 to 2010 in the U.S. Source–
Pew Research Center
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degrees of assimilation reduce discrimination. Assimilation reduces the chance that a

disadvantaged member is identifiable as disadvantaged because the person possesses attributes of

both the advantaged and disadvantaged group. For example, a religious minority who attends a

bank loan interview dressed in a business suit (characteristic of the advantaged majority) may

experience less discrimination than if he attends in traditional religious garb. We operationalize

assimilation in the ABM model by varying the proportion of characteristics (advantage) that the

disadvantaged group shares with the advantaged group (0% vs. 50%).

Varying the population mix of the applicant pool allows us to test whether the frequency of

exposure to applicants impacts discrimination in service. An increased balance in population mix

– a 50/50 split in two populations represents perfect balance – increases the loan officer’s

exposure to members of both groups. More exposure provides the loan officer with more

information. We operationalize population mix in the ABM by varying the percentage of

population that is advantaged (9% vs. 63%)3. The lower percentage of 9% represents a less

balanced population. We predict that the magnitude of discrimination will be lower when the

advantaged population represents 63% of the population mix. This is because a 63/37 population

mix is much closer to a balanced population than a 9/91 split. Discrimination decreases because

the loan officer has more information from both groups about consumer quality.

Varying the intensity of demand allows us to test how demand for service impacts service

discrimination. We operationalize this by varying the percentage of the city population that

applies for a loan in each ABM time period (20% vs. 80%). We posit that a greater frequency of

applications would lead to less service discrimination. A greater frequency of applications

provides banks with more information. More information should improve variation in quality

over time and thus decrease discrimination. This scenario reflects potential differences between

highly trafficked banks (e.g. city banks) versus less trafficked banks (e.g. rural banks), even after

controlling for other factors like population mix.

We investigate how the final factor, customer word-of-mouth (WOM), affects demand for

3Based on the percentage of the population that is White in South Africa and U.S respectively. Source: South
African National Census of 2011 and 2011 Pew Research Center Report
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services over time. Prior literature has established that WOM can have strong influence on

consumer choice (Goldenberg, Libai, and Muller 2001a; Libai, Muller, and Peres 2013; Trusov,

Bucklin, and Pauwels 2009). Our model assumes loan applicants are utility-maximizing. Utility

for bank b has an inverse relationship with distance (Distib) between applicant i and bank b. It

increases with i’s assessment of her probability of receiving a loan from the bank. The inclusion

of distance as a factor in the utility function is consistent with models in the consumer store choice

literature (e.g., Huff 1964; Rust and Donthu 1995). We account for additional unobservable

factors that influence an applicant’s utility with an extreme-valued distributed error term, εibt .

WOM about banks is an important factor in each consumer’s bank selection. Each consumer

in the ABM “talks” to other consumers in her network to find out who has received loans and

from which banks. We operationalize WOM through each consumer’s ability to access the

application history of other consumers in their network. WOM utility that applicant i has for

applying to bank b is driven by applicant i’s assessed probability that she will be offered a loan

from bank b at time t (PWOM
ibt = Pr(Loanibt | α,wi)). The probability is equal to the proportion of

the applicant’s social ties that has received loan offers from bank b weighted by the strength of the

social connection between i and each social tie k. Consistent with prior research, strong ties have

a greater probability of affecting an individual’s choice than weak ties (Brown and Reingen

1987). The strength of the social connection is measured as the inverse of the distance (Socik)

between i and k in the simulated city. WOM is also weighted by whether the source of WOM is

an in-group vs. out-group member. For example, if i is a member of the squares group in the

ABM, then i considers other squares as in-group sources of WOM and triangles as out-group

sources. Extant literature has shown that consumers give consideration to in-group versus

out-group sources of WOM (Podoshen 2006; Lam et al. 2009; Uslu et al. 2013).

We vary α ≥ 1, the weight that consumers place on WOM received from in-group relative to

out-group sources, with input values of 1 vs 3 (based on Brown and Reingen (1987); Podoshen

(2006); Zhao and Xie (2011) findings). When α = 1, applicant i equally weights in-group and

out-sources of WOM. An α > 1 implies that i places greater weight on WOM from other in-group
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ties. We also vary β , the weight that consumers place on WOM about bank b relative to the

weight placed on the distance to the bank Distib, with values 2 vs. 20 (based on Trusov, Bucklin,

and Pauwels (2009) findings). The utility that i has for applying to bank b at time t is as follows:

Uibt = βPWOM
ibt −Distib + εit , where

PWOM
ibt =

∑k wik 1(if b has ever offered a loan to k as of time t)
∑k wik

wik =
1+α 1(i,k ∈ j)

Socik

(14)

Each replication of the bank-applicant ecosystem runs for 300 time periods. Developed in the

NetLogo programming language (Wilensky 1999), the ABM generated over 15.7 million records

of data.

ABM Analysis and Results

The results we now share provide additional insight into the dynamics of discrimination in

service. Similar to the results from the empirical studies, note that the gap between the

advantaged and disadvantaged Group-Aware bank loan offer rates is larger than the Group-Blind

gap. Furthermore, the direction and significance of ABM effects are consistent with study results.

Consistent with Proposition 1, for example, the Group-Aware banks in the ABM are significantly

more likely to offer loans to advantaged applicants than their disadvantaged counterparts (Static

Advantage: −1.616, p < .001; Dynamic Advantage: −.801, p < .001). Consistent with

Proposition 2, decreases in measurement error decreases service discrimination (Static

Advantage: −24.118, p < .001; Dynamic Advantage: −14.720, p < .001)4. Lower intra-group

variance in quality increases the magnitude of discrimination (Static Advantage:

13.774, p < .001; Dynamic Advantage: 16.706, p < .001). These results provide added

confidence that the ABM is appropriately simulating the micro-results from the studies.

Consistent with our prediction, the ABM results suggest that increases in the proportion of

4The dependent variable is an exact measure of discrimination based on Equation 9. Data has been 1% trimmed to
reduce the effect of extreme outliers of discrimination values.
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the population that is advantaged (moving from an imbalanced to a balanced, integrated society)

decreases discrimination (Static Advantage: −1.982, p < .001; Dynamic Advantage:

−9.214, p < .001). Recall that discrimination is measured as a difference in expected quality,

conditional on two consumers from two groups having the same quality and score. A greater

percentage of the population applying for loans increases discrimination (Static Advantage:

19.433, p < .001; Dynamic Advantage: 13.377, p < .001). Decreased assimilation also has the

significant effect of increasing discrimination (Static Advantage: 46.990, p < .001; Dynamic

Advantage: 33.980, p < .001). Recall that the degree of assimilation relates to the proportion of

characteristics, and thus advantage level, that the disadvantaged group shares with the

advantaged. The ABM results support the expectation that the more assimilated the

disadvantaged group is, the less the group is discriminated against in receiving service.

We find that WOM and competition can drive loss of applicant market share and long-term

profits. On average, Group-Blind banks have a significantly greater share of all applicants in the

market (Static Advantage: 52.4% vs. 47.6%, p < .001; Dynamic Advantage: 52.8% vs.

47.2%, p < .001). WOM also can have a large impact on long-term profits. We regressed

cumulative profits on Group ,α (weight placed on in-group sources of WOM), β (weight placed

on WOM in general in the applicant’s utility function), and their interactions. We also included

controls for other ABM simulation factors (ScoreLowVar, QualityLowVar, assimilation,

population mix, number of applicants). Consistent with findings from prior WOM literature

(Trusov et al. 2009; Libai et al. 2013), we find that WOM in general (β ) has a positive impact on

long-term profits (Static Advantage: $2,333.27, p < .001; Dynamic Advantage: $3,537.74,

p < .001). However, the interaction of WOM parameters with the Group dummy reveals that the

greater the weight consumers place on WOM in general, the more negative its impact on the

long-term profits of Group-Aware banks relative to Group-Blind banks (Static

Advantage: $-4,487.35, p < .001; Static Advantage: $-6,431.03, p < .001). Regarding the

weight placed on in-group sources of WOM (α), we find mixed statistical support of its impact on

profits. Overall, the weight on in-group sourced WOM has a directionally positive but not
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statistically significant impact on long-term profits (Static Advantage: $1,460.26, p = .170;

Dynamic Advantage: $2,241.08, p < .091). However, its effect on Group-Aware banks’

long-term profits is negative and statistically significant (Static Advantage: $-2,597.01, p = .085;

Dynamic Advantage: $-4,176.76, p = .026)

Comparing average Group-Aware and Group-Blind banks’ short-term profits across all ABM

conditions, we find that the Group-Aware banks have, on average, higher profits per loan under

static advantage conditions (Static Advantage: $72.83 Group-Aware vs. $69.05 Group-Blind,

p < .001). This is consistent with our hypothesis in Proposition 3 which suggests that

discrimination is profitable in the short-run. However, under dynamic advantage conditions, we

find directional but not statistically significant support (Dynamic Advantage: $100.54

Group-Aware vs. $100.20 Group-Blind, p = .83). This is likely because the disadvantaged group

grows in advantage throughout the simulation to eventually equal the advantaged population by

the end of the simulation. Note that under both static and dynamic disadvantage conditions, the

difference between the Group-Aware and Group-Blind policies in average profit per period is

small. This may provide some indication as to why we were unable to find any statistical

difference between participant earnings in the Group-Aware vs. Group-Blind conditions in the

empirical studies. The studies have far less statistical power than the ABM.

However, when we compare average Group-Aware and Group-Blind banks’ long-term

profits across all ABM conditions, we find a reversal. Figure 3 (see after Reference) shows

average cumulative profits of each type of bank across ABM conditions. On average,

Group-Blind banks have sizably greater cumulative profits than Group-Aware banks (Static

Advantage: $255,437.73 Group-Blind vs. $240,966.49 Group-Aware, p < .001; Dynamic

Advantage: $339,956.23 Group-Blind vs. $313,239.71 Group-Aware, p < .001). By regressing

cumulative profits on Group, time, time2, and their interactions, we find that while the main effect

on Group (representing Group-Aware banks) is negative but not significant, its interaction with

time indicates that Group-Aware bank profits substantially erode over time (Static Advantage:

$-134.73, p < .05; Dynamic Advantage: $-196.93, p < .01). In the long-run, myopically
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profitable, rationally-based discrimination does not pay.

DISCUSSION

Summary

Our study shows how discrimination in service can emerge from seemingly-rational,

non-prejudiced decision-making. We define discrimination in service as different service

treatment of equally qualified consumers who differ only in group membership. We distinguish

discrimination from prejudice in that prejudice, stereotypes, and racism focus on internally-held

attitudes, beliefs, and ideologies. In contrast, discrimination, consistent with sociological

literature, is independent of internally-held attitudes. Discrimination concerns decision outcomes

that exhibit unequal treatment of people based on the category to which they belong;

discrimination is not necessarily driven by internally-held attitudes such as prejudice or bigotry

(Pager and Shepherd 2008; Quillian 2006).

Although many associate discrimination with race, ethnicity, and gender, our theory and

findings should equally apply to many more contexts beyond these categories. They apply to any

service scenario where the service provider 1) can segment consumers into groups based on some

observable attribute; and 2) the service provider uses group membership as well as individual

information about the consumer to make a decision about the provision of service to the

consumer. For example, consider how our theory applies to the scenario of the auto salesman who

must decide whether to spend his next hour showing Mercedes-Benz E-Class Cabriolets to an

18-year old man versus a 65-year old man waiting in the dealership lobby. Or perhaps the

salesman’s decision is about a 65-year old in a garbage man’s uniform versus a 65-year old man

in a business suit. Service decisions such as these, in isolation, may seem to have little impact on

firm profits. But the macro social patterns that can emerge from service decisions that rely on

group information can produce discriminatory outcomes with negative long-term profit

implications.
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We illustrate our theory with an example context of bank lending to applicants from either an

affluent (advantaged) or working-class (disadvantaged) part of town. Our study demonstrates that

discrimination in service can be profitable in the short-run, yet unprofitable in the long-run in

competitive markets. This is especially true if consumer word-of-mouth is extensive, as is

increasingly the case with modern social media. In our agent-based model, we find that service

providers using a Group-Blind service policy that ignores group membership information about

consumers have greater total profits over time than those with a Group-Aware service policy that

uses group membership information in addition to individual attributes in service

decision-making.

Theoretical Contribution

Our research provides three theoretical contributions to the literature. First, we examine the

critical role that variance plays in the emergence and persistence of service discrimination. Our

research shows that service discrimination can arise from low intra-group variation in consumer

quality and high measurement error of customer quality. Second, our findings demonstrate that

temporal changes in group advantage level can potentially improve or exacerbate service

discrimination. We found conditions where a disadvantaged group can experience increasing

discrimination despite its improving advantage levels over time. This is of concern because

historically disadvantaged groups have been improving in advantage over time in the U.S. Third,

we show conditions where a Group-Aware service policy using a minimum score criterion can be

more profitable in the short-run, but less profitable in the long run compared to a Group-blind

service policy. This matters because a myopic firm can be led down a damaging path by

short-term profitability when using group information in its service decisions.

Managerial, Consumer, and Public Policy Implications

These findings have important managerial implications. First, we recommend that firms who

use a Group-Aware policy in decision-making switch to a Group-Blind policy. The firm should
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consider the long-term benefits of switching to a Group-Blind service policy that does not use

group membership information. We have shown that employing a Group-Blind service policy can

provide a strong competitive advantage. It initially seems that a Group-Aware service policy

should be more profitable because such a policy provides the service provider an effective device

to screen out of risky customers and screen in profitable ones. However, we have shown that such

a policy can produce discrimination that erodes profits and market share over time. Because of

strong word-of-mouth effects, consumers can learn from each other which firms are unlikely to

provide favorable service conditions to them. If services with Group-Blind policies are available

as competitive alternatives, disadvantaged consumers will switch their preferences for these

services over time, and sufficient numbers of advantaged consumers will patronize Group-Blind

services as well. Although discriminatory practices may seem profitable in the short term, they

can damage service demand and profits in the long-run.

However, if the firm must persist in using a Group-Aware policy, then we recommend that

the firm measure and continually monitor the degree to which there is service discrimination, as

well as its impact on profits. Furthermore, we recommend that Group-Aware firms invest in

methods of measurement error reduction such as developing advanced methods of measuring

consumer quality or more sophisticated predictive models that improve accuracy in predicting

quality based on available measures. The Group-Aware firm could also increase its exposure to

consumer populations, which could improve information on the mean and variance of group

quality. For example, decision-makers could purchase outside data about target markets to

supplement its internal data. This could be a way to reduce service discrimination by increasing

the decision-maker’s exposure to a potentially wider range of consumer quality. This investment

should be done at sufficiently frequent intervals with richer predictive models to capture trends in

group advantage levels over time. Another potential solution which may be particularly useful to

service providers who implicitly screen customers (e.g. Starbucks, Macy’s, Denny’s, etc.) is to

incorporate in its employee training programs methods and materials that deliberately increase

perceived variability of members of different consumer groups. For example, Brauer and Er-rafiy
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(2011) show that exposing study participants to posters, pictures, articles, and video that highlight

the heterogeneity of members of Middle-Eastern and Chinese groups consistently reduced

participant discrimination against the each of the groups. By doing so, a firm can put itself on the

path to reducing discrimination in service and increasing its profits over time.

These findings also have consumer implications. Our findings imply that consumers seeking

less discriminatory experiences in service would do well to seek out services that are, by nature,

Group-Blind. For example, many e-commerce sites are more akin to Group-Blind service

providers since they have either no access or far less access to group membership information

than their bricks-and-mortar counterparts (e.g., think of buying shoes on DSW.com versus

walking into a DSW store). Another consumer implication directly results from the knowledge

that Group-Aware services are likely to have different minimum service criteria for groups that

differ in advantage. With this knowledge, if a consumer must seek service from a Group-Aware

service provider, he or she would do best by masking or omitting information on group

membership. Alternatively, the consumer could seek the provider that has the most favorable

minimum service criterion for his or her group. The consumer could also improve her outcome by

acquiring attributes of the advantaged group (assimilation) when seeking service. For example,

the man seeking to buy a Mercedes-Benz at an auto dealership may have a better service

experience by wearing a business suit, regardless of his age or occupation.

Our research has public policy implications as well. Currently in the U.S., there are laws,

such as the Civil Rights Act of 1964, the Equal Credit Opportunity Act, and the Fair Housing Act,

that strive to protect consumers from discrimination in service. However, the task of identifying

and proving existence of discrimination in support of enforcing these laws has been a difficult and

controversial one. For example, the U.S. Senate recently voted to strike down a rule designed to

curb racial discrimination in auto financing. Striking down the rule would provide auto lenders

the right to use different score cutoffs for different groups (Merle 2018). This is a public policy

debate which our research addresses precisely. One of the reasons given for repealing the rule is

the controversy surrounding how the Consumer Financial Protection Bureau determines whether
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discrimination exists in the first place (Hayashi 2018). Our research theory, definition of

discrimination, and our findings can provide a framework for developing analytical tools to detect

and measure discrimination. Furthermore, the same framework could be the basis of

measurement in litigation cases of consumer discrimination.

Limitations and Opportunities for Future Research

There are limitations to this research which suggest many ways that researchers can broaden

our knowledge on this topic. For example, our theory assumes customers are members of only

one population group. In reality, a consumer can be a member of multiple groups, some of which

may be advantaged while others may not (e.g., a wealthy entrepreneur who has no high-school or

college degree). It would be interesting to explore the boundaries of our theory under conditions

where consumers may have two or more group memberships with varying levels of advantage. A

second limitation is that we assume in our theory that firms continuously update beliefs using all

historical information available about customers who have sought their service. Although we

have found qualitative support in our interviews that this can happen in loan services, this may not

be true in all service contexts. A promising avenue for future research is investigating how

varying the frequency of updates and varying the historical window of data about consumers can

affect service provider beliefs. A third limitation of our research is that we assume that the

distribution of consumer quality is normally distributed. Although this is a generally reasonable

approximation, it would be interesting to explore the effects of other distributional assumptions

on service discrimination and on profits. A great deal of work is still needed to fully understand

the nature and boundaries of service discrimination, but we believe that the theoretical framework

created here serves as a launching point to exploring these and many more questions about the

effects of discrimination in service.
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Conclusions

We had three goals at the outset of the research discussed in this paper: 1) to uncover the

mechanism by which service discrimination can emerge from seemingly rational service policy;

2) to investigate how service discrimination interacts with competition and consumer

word-of-mouth to affect profits; 3) to help firms avoid losing profits due to discrimination. We did

so by developing a theoretical model that illuminates the critical roles that variation in consumer

quality and measurement error in detecting quality play in the emergence and magnitude of

discrimination in service. Our theoretical model also demonstrated that changes in group

advantage over time can erode or improve the magnitude of discrimination over time, even if the

inequality gap is decreasing. We validated our theoretical model with empirical evidence in two

studies. The evidence supported our theory that large variation in consumer quality reduces

service discrimination while large measurement error increases service discrimination.

Furthermore, the empirical evidence demonstrates that under certain conditions, decreasing

inequality between groups can actually increase service discrimination. With our agent-based

model, we showed the long-term macro effects on profits when firm competition and consumer

word-of-mouth embedded in a complex system are taken into consideration. We found that

although Group-Blind service providers, who do not use consumer group membership

information in its service decisions, are less profitable than their Group-Aware competitors in the

short-run, Group-Blind service providers are more profitable in the long-run. This is because

consumer word-of-mouth drives consumers to select the most service-friendly alternatives among

competitive options.

We provide managerial recommendations on reducing service discrimination’s

profit-damaging effects. This research emphasizes the long-term benefits of switching to a service

policy that does not use group identity information. However, for firms that must persist in using

group identity information, this research has additional recommendations which include

increasing investment in methods of measurement error reduction and increasing exposure to

consumers of different populations. By doing so, a firm could reduce service discrimination while
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improving its long-term profits and societal well-being.
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Table 1: Summary of Empirical Results
Dependent Coefficient of Study 1 Effects: Study 2 Effects:

Proposition Variable Interest Static Inequality Dynamic Inequality Supported?

1 The service provider’s minimum score
criterion will be higher for the disad-
vantaged than advantaged group. This
means that the disadvantaged consumer
will need to exceed a higher criterion than
an equally qualified advantaged consumer
to receive same level of service.

Pr(Loan) Disadvantaged*Group
-1.013

p <.001
-1.837

p <.001 Yes

2.1 Discrimination decreases when the error
in measuring consumer quality decreases.

Repay
Disadvantaged*Group

*ScoreLowVar
2.982

p <.001
3.358

p <.001 Yes

2.2 Discrimination increases when variance
in consumer quality decreases.

Repay
Disadvantaged*Group

*QualityLowVar
-6.383

p <.001
-1.499

p = .051 Yes

3 The service provider’s average profit per
period (short-term profit) is greater when
he discriminates than when he does not
(uses a Group-Aware policy rather than a
Group-Blind policy).

Profit Group
.152

p is n.s.
.092

p is n.s. No

4 If the disadvantaged group improves in
advantage over time, there are conditions
where the group’s minimum service crite-
rion rises over time because of the group’s
improving advantage.

Pr(Loan)
Disadvantaged

*Dynamic*Round N/A
-.729

p <.05 Yes

5 Although a disadvantaged group im-
proves in advantage over time, only some
members will benefit by experiencing de-
creasing discrimination. Other members
will see increasing discrimination due to
the group’s improving advantage.

Repay
Disadvantaged*Dynamic

*Round*Quality N/A
27.210
p <.05 Yes
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Figure 1: Two-Period Model of Service Discrimination
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Figure 2: Mean Loan Offer Rates
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Figure 3: Long-Term Profits: Group-Blind vs. Group-Aware Banks
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APPENDIX A: PROOFS

For all proofs, we assume the following: Each loan applicant i is a member of one of two

population groups j ∈ {Adv,Dis}. Initially, the advantaged group has an advantage level that is

greater than the disadvantaged group (AAdv > ADis). The groups are initially equal in intra-group

variation in quality (σ2
q = σ2

qAdv
= σ2

qDis
). We also assume that the bank’s ability to measure

quality is unaffected by changes in composition of the groups (thus σ2
ε is constant across groups

and across time).

In order to compare Group-Aware and Group-Blind policies in terms of average per period

profits, we first must determine the ordinal relationship of Smin
all ,S

min
Dis , and Smin

Adv. Proposition 1

establishes that the minimum score criteria derived from a Group-Aware policy have the ordinal

relationship Smin
Dis > Smin

Adv under most conditions. We their ordinal relationship with respect to Smin
all

this in the following Lemma.

Lemma 2 The Group-Aware policy minimum score criterion for the disadvantaged is always

greater than the minimum score criterion of a Group-Aware policy (i.e., Smin
all < Smin

Dis ).

Proof by contradiction: Let us suppose the contrary, that Smin
all > Smin

Dis . Drawing from Equations (6)

and (7), that implies:

Smin
all > Smin

Dis

Qmin +
(
Qmin−Aall

)( σ2
ε

σ2
qall

)
> Qmin +

(
Qmin−ADis

)(σ2
ε

σ2
q

)
Qmin−Aall

Qmin−ADis
>

σ2
qall

σ2
q

Since (Qmin−Aall)< (Qmin−ADis) and σ
2
qall

> σ
2
q , then

Qmin−Aall

Qmin−ADis
< 1 <

σ2
qall

σ2
q

, which is a contradiction.

∴ Smin
all < Smin

Dis ∀ σ
2
q ,σ

2
ε ,Q

min,A j

(15)
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Proof of Proposition 3

We wish establish the conditions where E(Π | Smin
j )≥ E(Π | Smin

all ): the average per period

profit resulting from a Group-Aware service policy is greater than that of a Group-blind service

policy. Based on the equations in (8), we can expand this inequality and rearrange terms as

follows:

E(Π | Smin
j∈Adv,Dis)> E(Π | Smin

all )

∑
j∈Adv,Dis

∫
∞

Smin
j

p j E(Qi j | Si j) f j(S)dS
2−FAdv(Smin

Adv)−FDis(Smin
Dis )

> ∑
j∈Adv,Dis

∫
∞

Smin
all

p j E(Qi | Si) f j(S)dS
2−FAdv(Smin

all )−FDis(Smin
all )∫ Smin

all

Smin
Adv

E(Qi,Adv | Si,Adv) fAdv(S)dS
FAdv(Smin

all )−FAdv(Smin
Adv)

+
∫

∞

Smin
all

pAdv [E(Qi,Adv | Si,Adv)−E(Qi | Si)] fAdv(S)dS
2−FAdv(Smin

Adv)−FDis(Smin
Dis )

>
∫

∞

Smin
Dis

pDis [E(Qi | Si)−E(Qi,Dis | Si,Dis)] fDis(S)dS
2−FAdv(Smin

all )−FDis(Smin
all )

+
∫ Smin

Dis

Smin
all

E(Qi | Si) fDis(S)dS
FDis(Smin

Dis )−FDis(Smin
all )

∴ E(Π | Smin
j∈Adv,Dis)> E(Π | Smin

all )

The following proofs involve dynamics. We first present the following additional

assumptions: There are two time periods t ∈ {1,2}, two population groups of consumers

j ∈ {Adv,Dis}, and each loan applicant i is a member of one group and applies in one time period

only. At time t = 1, the advantaged group has an advantage level that is greater than the

disadvantaged group (AAdv,1 > ADis,1), the groups are equal in intra-group variation in quality

(σ2
q1
= σ2

qAdv,1
= σ2

qDis,1
). We also assume that the bank’s ability to measure quality is unaffected by

changes in composition of the groups (thus σ2
ε is constant across groups and across time).

Let us assume that there are two cohorts of applicants where cohort 1 applies for a loan at

time t = 1 and cohort 2 applies at t = 2. Applicants from both cohorts are members of group j.

Let p jt represent the proportion of all applicants from group j that are comprised of cohort 1

applicants. This means that the proportion of all j applicants that are in the first cohort is

p j1 ∈ (0,1) and cohort 2 is (1− p j2). Also assume that the two cohorts are equal in intra-cohort

variation in quality (σ2
q j1

= σ2
q j2

). However, the advantage level of cohort 2 is g j times the level of

cohort 1 advantage (A j2 = g jA j1, where g j ∈ [0,∞)).
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Proof of Proposition 4

If the loan officer uses all available information about group j as of time t = 2, then based on

Lemma 1 and Equation (6), the loan officer’s minimum score criterion for group j is

Smin
jc = Qmin +

(
Qmin−A jc(g j)

)( σ2
ε

σ2
q jc
(g j)

)

To understand the impact of growth of group j’s advantage on the minimum score criterion, we

take the derivative of Smin
jc with respect to g j.

∂Smin
jc

∂g j
=

A j1(1− p j1)σ
2
ε

σ2
q jc
(g j)

[
2A j1 p j1(1− p j1)(1−g j)(Qmin−A jc(g j))

σ2
q jc
(g j)

−1

]
(16)

Trivially, Smin
jc = Smin

j1 when g j = 1. Otherwise, when g j 6= 1,
∂Smin

jc

∂g j
has the following behavior,

which depends on the relationship of Qmin with respect to a threshold value A∗:

∂Smin
jc

∂g j



> 0


when g j > 1 and Qmin < A∗

when g j < 1 and Qmin > A∗

= 0 when g j 6= 1 and Qmin = A∗

< 0 otherwise

where

A∗ = A jc(g j)+
σ2

q jc
(g j)

2A j1 p j1(1− p j1)(1−g j)

= A j1

[
p j1(1−g j)+

1
2
(1+g j)

]
+

σ2
q j1

2A j1 p j1(1− p j1)(1−g j)

(17)

Proof of Proposition 5

We wish to show that a consumer can experience an increasing degree of discrimination over

time even if her group’s advantage is improving. We establish this with the following proof. Let
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consumers i and − i from groups j and − j have constant quality level Q∗. Recall from Definition

1 that discrimination is defined as:

Dit = (γAdv,t− γDis,t)Q∗+
[
(1− γAdv,t)AAdv,t− (1− γDis,t)ADis,t

]
(18)

We define the change in discrimination i experiences over time as

∆Di = Di2−Di1 = (∆γAdv−∆γDis)Q∗+[∆(1− γAdv)AAdv−∆(1− γDis)ADis]

where ∆γ j = γ j2− γ j1 and ∆(1− γ j)A j =
[
(1− γ j2)A j2− (1− γ j1)A j1

](19)

If γ j2 = γ j1, then all consumers i experience no change in discrimination over time. However, if

γ j2 6= γ j1, then the consumer i that experiences no change in discrimination (∆Di = 0) has quality

Q∗ = Q∗∆D0 =
∆(1− γDis)ADis−∆(1− γAdv)AAdv

∆γAdv−∆γDis
(20)

Consumers with Q∗ 6= Q∗
∆D0 experience changing discrimination under the following conditions:

∆Di > 0


∆γDis > ∆γAdv when Q∗ < Q∗

∆D0

∆γDis < ∆γAdv when Q∗ > Q∗
∆D0

∆Di < 0


∆γDis > ∆γAdv when Q∗ > Q∗

∆D0

∆γDis < ∆γAdv when Q∗ < Q∗
∆D0

(21)

Hence, different members of the same group j can experience different degrees of discrimination

over time as a result of their group’s change in advantage.
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