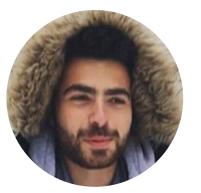




### **Expanding Spanish Language Audiences**



Sergey Fogelson TelevisaUnivision Date



Edouardo Vitale TelevisaUnivision Date



### Expanding Spanish Language Audiences Through a Custom Lookalike Modeling Architecture

Sergey Fogelson Edouardo Vitale 04.25.2023



# **Motivation**



4 in 10 Hispanics are excluded from 3p datasets



70% of impressions targeted at Hispanics are wasted



The true scale of the Hispanic population within a given brand's 1p dataset is hard to identify without extensive validation





**1P VIEWERSHIP** 

**3P VIEWERSHIP** 

- ViX
- UNow
- Digital Apps
- Univision.com

AVOD platform video impressions

•

٠

SVOD/VMVPD Programmatic video impressions Age/gender/income/education taken from our spine partner

DEMOGRAPHICS

Combine these 3 sources to create robust household-level representation of ~17MM Hispanic households in the US

HOUSEHOLD GRAPH



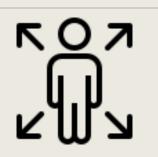
# **Expanding An Audience With Look-alike Modeling**

#### WHAT IS LAM?



Look-alike modeling (LAM) is a process that helps identify individuals who look and act just like a given target audience

#### WHAT IS IT USED FOR?



Look-alike models are used to build larger audiences from smaller segments to create reach for marketers and advertisers

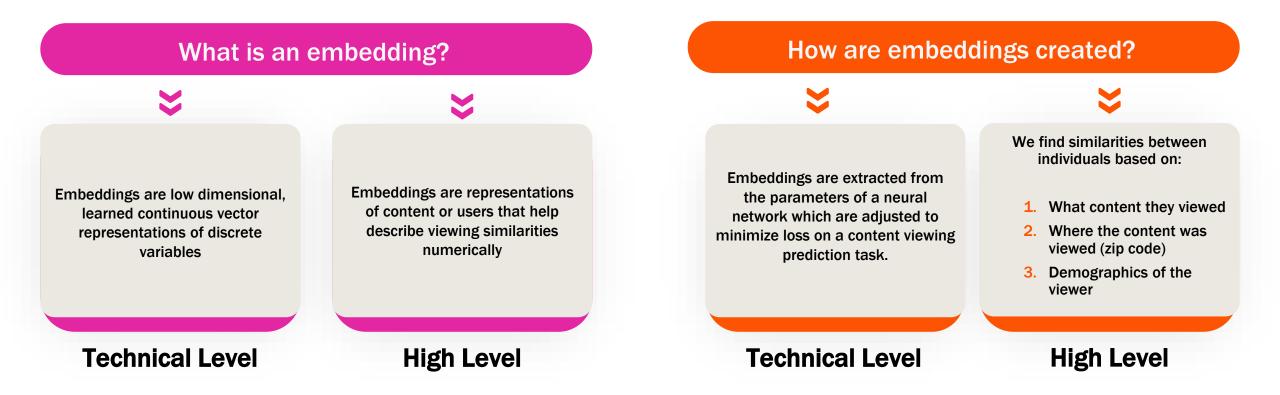
### HOW DOES OUR LAM WORK?



Embeddings are used to create a latent space that allows for comparing user similarities, very similar users have (mathematically) very similar embeddings



# **Embeddings**



#### Televisa Univisio

# **Example Data and Embeddings**

### INPUT ⇒

#### **Title Embedding Input**

| DEVICE ID               | TITLE INPUT                       |
|-------------------------|-----------------------------------|
| ae5c55a7-c7db-e8b3-490f | ['Lamentos', 'Liga MX','La Rosa'] |

#### Zip Code Embedding Input

| ZCTA  | TITLE INPUT                                        |
|-------|----------------------------------------------------|
| 43220 | ['El Privilegio de Amar 'Las Amazonas', 'La Rosa'] |

#### **Demographic Embedding Input**

| DEMOGRAPHIC GROUP                                          | TITLE INPUT                                          |
|------------------------------------------------------------|------------------------------------------------------|
| ['Male', '18-24', '< 100K income', 'Highschool Graduate' ] | ['Tom & Jerry', 'ESPN', 'Law and Order','Godfather'] |



#### **Title Embedding Output**

| Title   | Vec_0    | Vec_1    | Vec_2   | Vec_3   | <br>Vec_19 |
|---------|----------|----------|---------|---------|------------|
| Liga MX | -1.67986 | -0.82079 | 2.30146 | 0.06019 | -1.45798   |

#### Zip Code Embedding Output

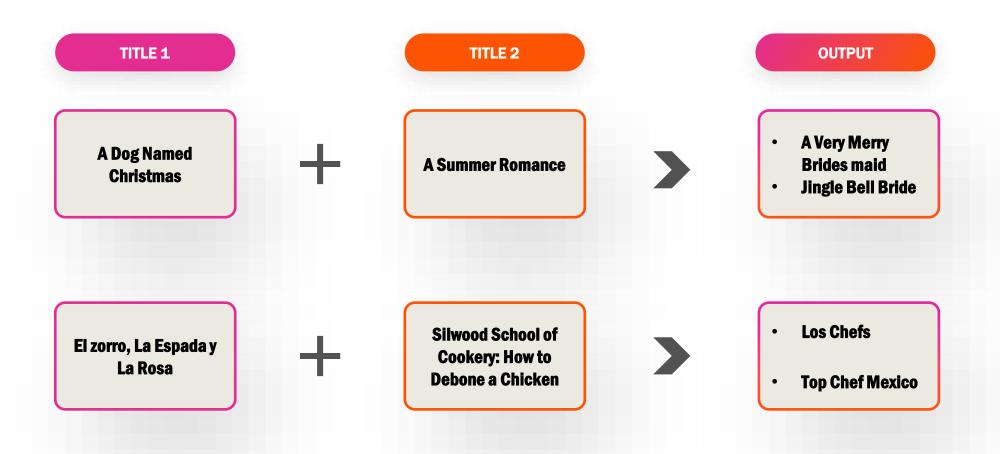
| Title | Vec_0    | Vec_1    | Vec_2   | Vec_3   | <br>Vec_19 |
|-------|----------|----------|---------|---------|------------|
| 33136 | -1.59740 | -0.67312 | 0.97731 | 1.09124 | -1.86311   |

#### **Demographic Embedding Input**

| Title                                                      | Vec_0    | Vec_1    | Vec_2   | Vec_3   | <br>Vec_19 |
|------------------------------------------------------------|----------|----------|---------|---------|------------|
| ['Male','18-24','< 100K<br>income','Highschool Graduate' ] | -1.59740 | -0.67312 | 0.97731 | 1.09124 | -1.86311   |



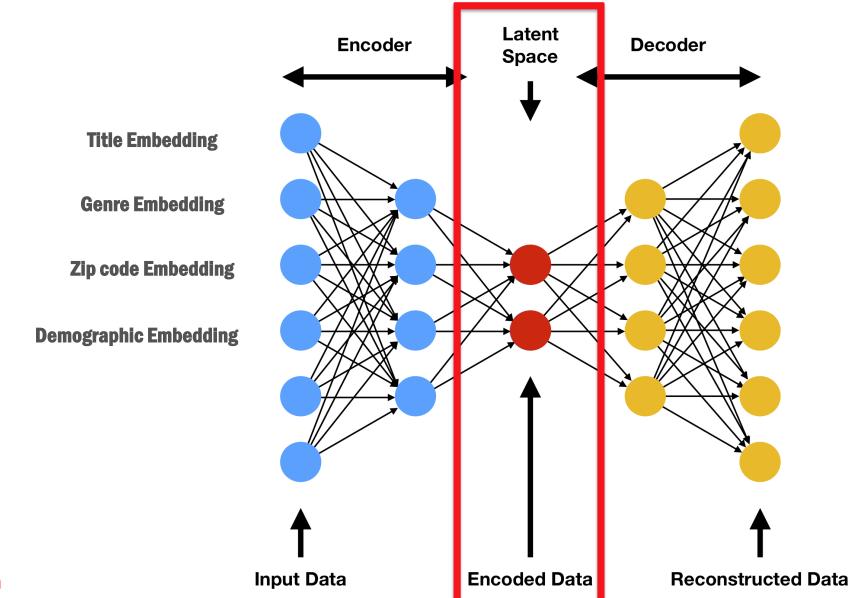
## **Embeddings Allow Us to Perform Title Math**





# **Autoencoder Architecture**

Televisa Univision



Reconstruction layer confirms integrity of original embeddings

# **Expanding Our Target Audience with LAM: Process**



### ×

Generate embeddings of titles/zipcodes/demographic attributes, combine with autoencoder Average the auto-encoded embeddings for all identifiers in a seed list

Generate aggregate

seed audience

X

Calculate Expansion Leveraging household graph

### ×

Find the most similar other identifiers in our graph to the aggregated audience and find all other identifiers in those households within our graph



### How do we Validate?

### 01

Generate an audience identifier list
First Party video audience
Third Party video audience

### 03

Calculate N percent most similar identifiers to aggregate seed vector over our household graph

#### 02

Select a random seed list of ~1K ids from the audience and average their embeddings into an aggregate seed vector

### 04

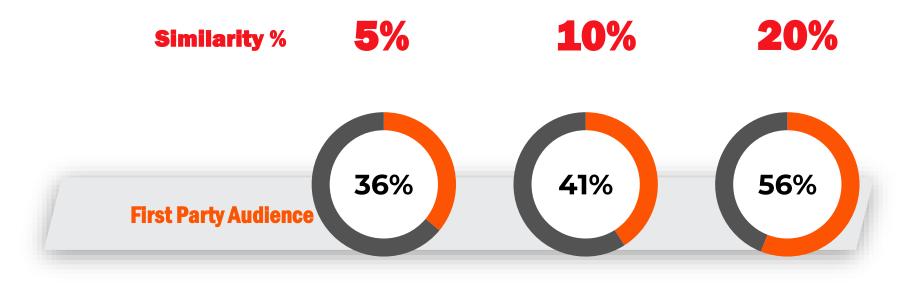
Calculate % of original audience list found in top N percent similar identifiers list

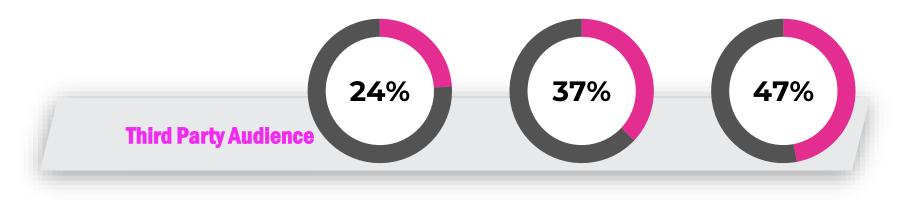
<u>Reasoning:</u> Selecting ids at random should give a proportional % of ids in the top percentile in relation to list size.

E.G. A random list of  $\sim$  10% of our most similar devices should contain  $\sim$  10% of the original identifier list. Lift is shown by having a larger proportion of the original audience in the Lookalike audience list.



### How do we Validate?: Results







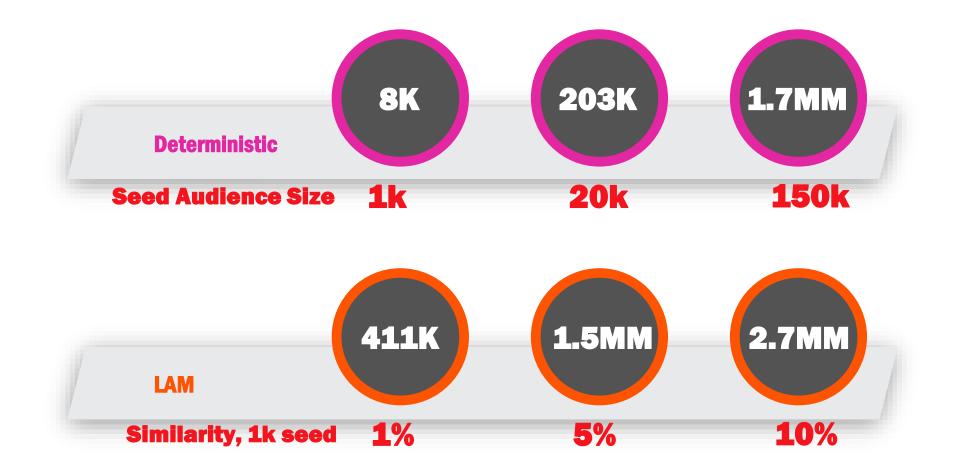
### **Expansion – Resulting Audience Sizes**

#### DETERMINISTIC

**Televisa** 

#### DEFINITION

Propagating IDs through graph to household level and finding all household-level identifiers, based on having a given number of matched ids



### Conclusions



Leveraging our graph, we can reliably identify what identifiers in a 1p audience are likely to belong to Hispanic media consumers



LAM reliably finds other identifiers in our graph that are very similar to the 1p audience based on zip/demo/geo viewing similarities



LAM + our graph achieves significant increases in overall audience scale, allowing brands to maximize in-target reach within the Hispanic population.

