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What is Indeed?

Indeed is the world’s number one job site and leading matching and hiring platform.
We strive to make a positive impact on society by connecting people to better work
to create better lives.

We must regularly engage with new employers and jobseekers to balance the market
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What is Indeed?

Indeed is the world’s number one job site and leading matching and hiring platform.
We strive to make a positive impact on society by connecting people to better work
to create better lives.

We must regularly engage with new employers and jobseekers to balance the market

What are we trying to achieve?

1. Measurement of the incremental impact of advertising on KPls.

2. High quality continuous reporting with actionable analytics and insights.



Major Considerations for Experimentation at Indeed

e New customer focus

For current customers, retargeting would be straightforward

e Cookie-free

Deprecation in process .

e Privacy forward

Doesn’t allow us to see individual customer data

e Ability to verify advertiser data

Allows for “checks” on delivery and efficacy

Rules out most “walled gardens”



Experimentation through Data Clean Rooms

Fragmented Landscape: Indeed uses multiple vendors to measure incrementality, but
the process remains the same.

s‘.oll:( snowflake &) samooha ama;on ads Habu



Experimentation through Data Clean Rooms

Fragmented Landscape: Indeed uses multiple vendors to measure incrementality, but
the process remains the same.

© samooha amazonads Habu

Publisher Clean Room Indeed




Experimentation through Data Clean Rooms

Fragmented Landscape: Indeed uses multiple vendors to measure incrementality, but

the process remains the same.

© samooha amazonads

d b

o€ snowflake

e

Publisher

1P Audience
Data

Pl

Clean Room

Indeed

Habu




Experimentation through Data Clean Rooms

Fragmented Landscape: Indeed uses multiple vendors to measure incrementality, but

the process remains the same.

d b

o€ snowflake

e

Publisher

© samooha amazonads

1P Audience
Data

Pl

Clean Room

Indeed

Habu

Test Group

Control Group




Experimentation through Data Clean Rooms

Fragmented Landscape: Indeed uses multiple vendors to measure incrementality, but

the process remains the same.

© samooha amazonads

of [l
o€ snowflake
r
Publisher
1
1P Audience
Data

Pl

Clean Room

Test Group

Control Group

Pl

Indeed

Habu

3

Site Conversion
Data




Experimentation through Data Clean Rooms

Fragmented Landscape: Indeed uses multiple vendors to measure incrementality, but

the process remains the same.

© samooha amazonads

of [l
o€ snowflake
r
Publisher
1
1P Audience
Data

Pl

Clean Room

Conversion Rate

Test Group

Control Group

) 4

Test

Control |,

ncremental Lift

Pl

Indeed

Habu

3

Site Conversion
Data
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Fragmented Landscape: Indeed uses multiple vendors to measure incrementality, but
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Clean Room Experimentation
In Practice



Bias in Online Experimentation
Clean experiments in an online marketplace is difficult due to a complex marketplace.

Activity Bias
Test users may be more active on the publisher’s platform than control users
Experiment may measure “Activity”, rather than ad effects

Ad Server Bias

Ad servers optimize to specific behaviour (i.e. clicks) and may serve PSA/House ads to a

different type of user than the test group
Base Rate Bias

Baseline conversion rates of different methods (Ghost Ads, Suppression, etc.) may be

dissimilar, causing incorrect lift estimates against a test population in unpredictable ways



Experimental Design: Five Variations
Creating of the control group can be achieved in multiple ways

Ghost Ads | — Control users are served ads normally, but log when test ads would have won the auction
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Experimental Design: Five Variations
Creating of the control group can be achieved in multiple ways

Publisher
House Ads

Ghost Ads | — Control users are served ads normally, but log when test ads would have won the auction

— Control users are identified by serving a house ad for the publisher’s platform

Medium
Technical
Set Up

— Control users are served a PSA ad paid for my the advertiser

— (Pairwise Comparison) Control users matched to test

users via propensity score modeling

PSA
Ads
Propensity
Score
Medium Matching
Technical
SEEL Fé)e(?eurlr:?; Intent to
Treat

Modeling

— (Suppression) Control users are identified
and suppressed from the test campaign



Interpreting Experiment Results



Comparing the Options: There is No Free Lunch
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Experiment

Activity

Ad/Context

Base Rate

Design Bias Bias Bias Pros Cons
Best mimics real world for Few publishing partners have
Ghost Ads v v 2 control users this capability
No cost to advertiser Low control over the analysis
: Partially accounts for Requires publisher support
Publisher R :
H Ad v 4 activity bias Unknown behaviour of control
OUSE AdS usersreceiving house ads
Partially accounts for Additional cost to advertiser
PSA Ads v 2 activity bias Unknown behaviour of control
usersreceiving PSA ads
Propensity Potentially strips away Requires additional datato
Score tbd 4 noise in unexposed users model high quality matches
Matching
Clean analysis IFthere is Requires publisher support
Intent to o
Treat tbd V| tbd access to unexposed test Lower statistical power due to

population data

additional “noise”



Challenges with Interpreting Experiment Results

Low Match/Conversion Rates Comparing Results

1. Household identity graphs (one to

1. Narrow definition of a “match” many) vs individual identity graphs

(one to one)
2. Match rates can be low and variable
a. Relative lift is comparable, but

a. Is the advertising ineffective or is attributed conversions can be
there significant loss in matching? very different.
3. Resolving personal and corporate 2. How comparable are experiments
email accounts is a challenge with different control group

construction?




Clean Room Experimentation: A Success Story
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Clean Room Experimentation: A Success Story

Ghost Ads [ Social Partner #1 ] \ Measured
Aggregate
Publisher [ Streaming Audio Partner #1 ] Incrementality
House Ads | CTV Partner #3 S
[ OLV Partner #1 | oLV
PSA Ads 1
[ Display Partner #1
Display
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