

Business Outcomes in Advertising Powered by Machine Learning

Brett Mershmann

NCSolutions

BUSINESS OUTCOMES IN ADVERTISING POWERED BY MACHINE LEARNING

March 2024

Brett Mershman Sr. Director, Data Science NCSolutions

Better advertising begins here.

Copyright ©2024 NCS | Confidential & Proprietary

AI IS ALL THE BUZZ

56% OF MARKETERS WANT TO IMPROVE THEIR CAMPAIGN MEASUREMENT PERFORMANCE IN THE NEXT 12 MONTHS

TODAY, WE WILL:

- Provide an overview of traditional and machine learning campaign measurement techniques
- Share how each traditional technique performed in a head-to-head comparison with machine learning
- Help you determine if you're accounting for all of the right variables

_
—

CAMPAIGN MEASUREMENT TECHNIQUES

TRADITIONAL

Household matching (Nearest-Neighbor) Household matching (Propensity) Inverse propensity weighting (IPW)

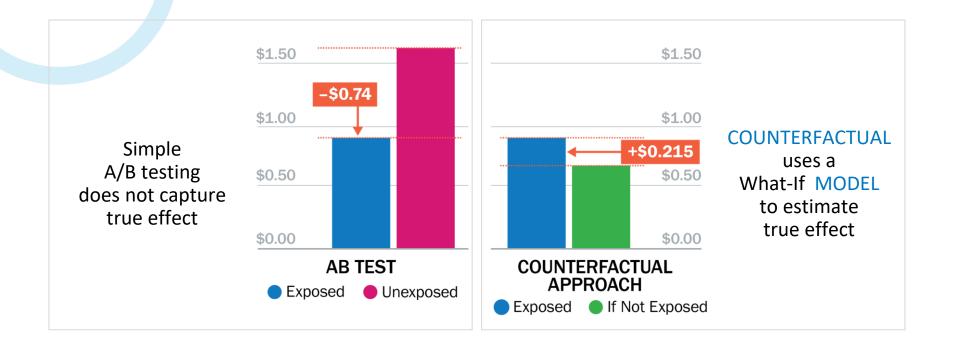
- Based on simple statistical models applied uniformly
- Simulates balanced test and control groups to estimate group-wise counterfactual

MACHINE LEARNING

NCSolutions' Measurement Methodology

- Computationally robust for large, complex data sets
- Understands that data is not one-size-fitsall
- Estimates counterfactual for individual observations

WHY PREDICTIVE MODELING?



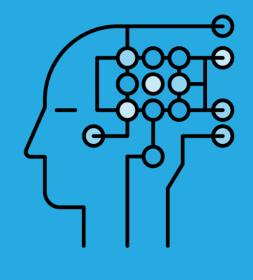
HOW DOES MACHINE LEARNING COMPARE TO TRADITIONAL METHODS?

MEASURES:

- **1.ACCURACY:** percent of experiments where the method was closest to the true effect
- **2.VALIDITY:** percent of experiments where the true effect was in the 80% confidence interval
- **3.POWER:** average width of the confidence interval

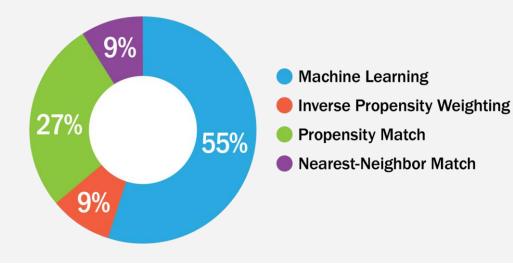
APPROACH:

- 11 experiments
 - Real observational input data across CPG departments
 - Simulated brand purchase with a known true effect



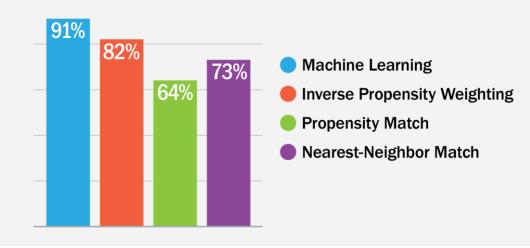
MACHINE LEARNING OUTPERFORMS ON ACCURACY

ACCURACY: PERCENT OF SCENARIOS WITH CLOSEST ESTIMATE

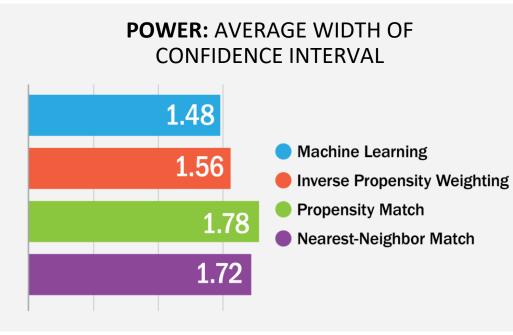


MACHINE LEARNING GIVES VALID ESTIMATES MOST OFTEN

VALIDITY: PERCENT OF SCENARIOS WITH TRUE EFFECT IN CONFIDENCE INTERVAL



MACHINE LEARNING IS MORE STATISTICALLY POWERFUL



ML vs. RCTs

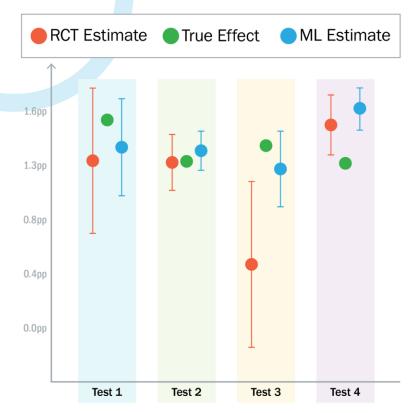
In tightly controlled experiments, randomized controlled trials (RCTs) are considered very accurate.

(These are costly, and not always feasible)

APPROACH:

- Ran both RCT & ML analysis
- 4 technicians created testcontrol groups on real, limited data
 - Given 250,000 HH, not all needed to be used
- Applied the same outcome function to each, depending on a larger set of variables

HEAD TO HEAD: ML VS. RCT

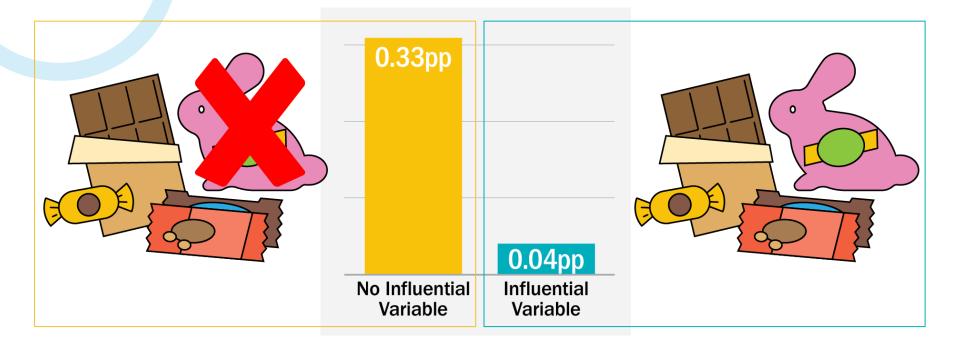


- Both ML and RCT are ACCURATE
- Both methods are generally VALID
- ML is MORE POWERFUL
- Test 3 had very small control group relative to the total population
 - o Control = 12,864

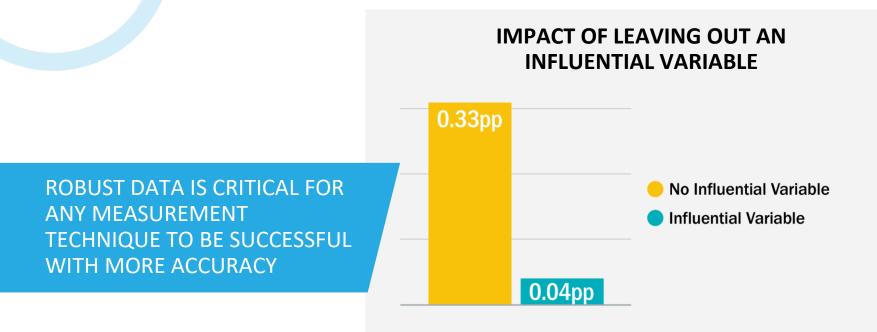
o Test = 24,000

 RCT ACCURACY requires large test AND control populations

HOPPING INTO INSIGHTS



ACCOUNTING FOR ALL OF THE RIGHT VARIABLES



Copyright ©2024 NCS | Confidential & Proprietary

TAKEAWAYS & BEST PRACTICES

MACHINE LEARNING IS A PROVEN APPROACH TO MEASURE ROI

- Accurate, valid and powerful
- Reliable and a great alternative to RCTs

MACHINE LEARNING BENEFITS:

- Versatile, agile and applies the right models
- Faster and offers more precision and granularity
- Supports smaller brands and smaller campaigns

QUESTIONS TO ASK:

- Is the data robust and informative for the questions you are asking?
- Are the sample populations large enough?
- Are the methodologies provably accurate, valid and powerful?
- Are your sales lift results driving and informing your strategic decisions?
 NCSolutions*

THANK YOU!

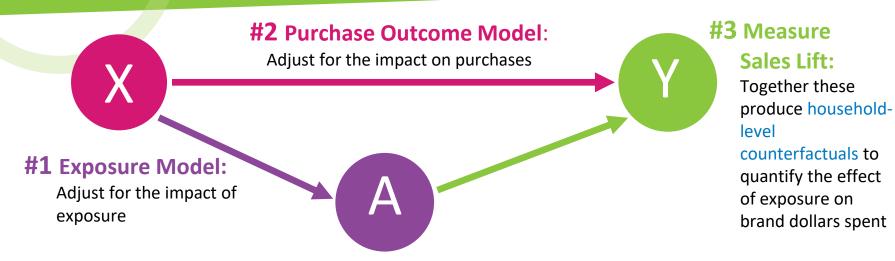
CONNECT WITH US: Learn how NCS Next Gen machine learning measurement can help your outcomes:

- Faster Results
- Flexible
- Actionable
- Precise Insights

SCAN ME

APPENDIX

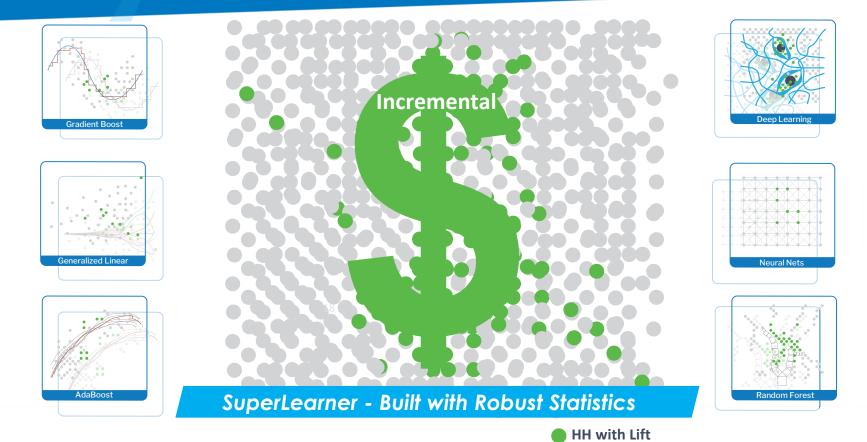
MACHINE LEARNING NEXT GEN CAUSAL FRAMEWORK: POWERED BY **SUPERLEARNERS**



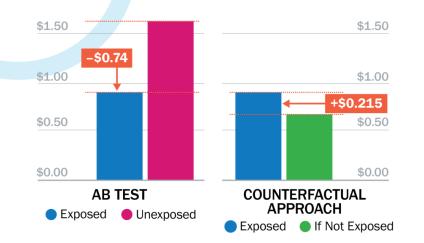
- X = Variables (i.e., HH demos, previous category and brand buying, etc.)
- A = Ad Exposure (i.e., Targeting)
- Y = Outcomes (i.e., Brand Dollars Spent)

WHAT IS A SUPERLEARNER?

Step 1: Builds many different models Step 2: Narrows them down based on a loss function Step 3: Combines them into one ensemble model



WHY PREDICTIVE VARIABLES?



Exposed?	Real Brand X \$	Brand X \$ (if unexposed)
Yes	\$1.19	\$1.00
No	\$2.25	_
No	\$1.00	_
Yes	\$0.59	\$0.35

SAMPLE OUTCOME FUNCTION

def prob(banner, pce,income,disc, hhsize, femage, gender, poc, csqty, catquart, popre,exposed):
if pce == 1:
if banner == 60:
p0 = 0.005*income**0.5 + 0.15*disc*popre/4 +0.2*gender+ 0.1*poc + 0.05*hhsize - 0.1*((femage-2)**2-(
+ 0.08*exposed*(1-0.1*hhsize+0.3*gender+0.2*poc)
elif banner == 19:
p0 = 0.007*income**0.5 + 0.02*disc +0.2*gender -0.05*poc + 0.3*hhsize*popre/7 - 0.03*((femage-2)**2-
+ 0.1*exposed*(1+0.05*hhsize+0.3*gender+0.1*poc)
else:
p0 = 0.005*income**0.5 + 0.08*disc*hhsize/6 +0.2*gender+ 0.07*hhsize - 0.07*((femage-3)**2-0.5) +0.0
+ 0.07*exposed*(1+0.05*hhsize+0.3*gender+0.1*poc*catquart/4)
elif pce == 0:
if banner == 60:
p0 = -0.3 + 0.001*income**0.5 + 0.1*disc + +0.05*hhsize - 0.01*popre/10 + 0.01*poc + 0.06*exposed*(
elif banner == 39:
p0 = -0.3 + 0.01*np.log(np.max([income,1])) + 0.1*gender + 0.1*disc*hhsize + 0.05*poc - 0.03*femage
+ 0.06*exposed*(1+0.05*hhsize+0.2*gender+0.5*disc)
else:
p0 = -0.3 + 0.005*popre/10+ 0.01*income**0.25 + 0.1*gender*(1+0.5*disc) + 0.12*hhsize - 0.1*((femage