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W o r k i n g  P a p e r

Handling Missing Values in
Marketing Data: A Comparison
of Techniques 

James Lemieux and Leigh McAlister

As firms gather and analyze customer data, they must “solve”

the problem of missing information.This study compares 

six techniques and offers guidance on which method will help

managers determine the best marketing decisions.

Report Summary
As companies accumulate and analyze data on 
their customers, they inevitably encounter the
problem of missing information. Lemieux and
McAlister provide guidelines for managers to
use when confronted with this problem.They
focus on prescriptive techniques for imputing
missing information when there is no special
structure to the data.

Using both simulated and real customer data,
Lemieux and McAlister compare six imputa-
tion techniques—complete case analysis (CCA),
hot deck (HD), mean imputation (Mean),
expectation maximization (EM), data augmen-
tation (DA), and multiple imputation (MI).

Their results show that CCA—which drops all
customers for which there is missing informa-
tion—should never be used, as it always per-
forms worst.This is an important insight given
the fact that CCA is the default treatment for
missing information in popular statistical anal-
ysis software packages.

The recommended technique depends on the
analyst’s objective. If the objective is to get the
most accurate imputations, or imputations
yielding the most accurate estimates of means
or covariances, then EM should be used. If the
objective is to get the most accurate estimates of
variances, then HD should be used. If the ob-
jective is to get the most accurate model coeffi-
cients or models producing the most accurate
model predictions, then Mean should be used.

The results imply that Mean imputation works
best when the analyst’s objectives are focused on
helping managers make good decisions, since
accurate model coefficients can be used to assess
the impact of marketing actions and accurate
model predictions help determine the best mar-
keting decision.This result is a significant con-
tribution to the existing literature since it shows
that more sophisticated methods focused on
producing accurate intermediate measures (e.g.,
means, covariances, and variances) do not per-
form as well as less sophisticated methods for
measures most directly applicable to managers. n
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Introduction

As companies accumulate and analyze data on
their customers, they inevitably encounter the
problem of missing information. Many tech-
niques have been developed to address this
problem. In this paper, we review the literature
on missing information and provide guidelines
for managers to use when confronted with the
problem of missing information.

The literature contains two streams of research
related to the problem of missing information.
The first stream describes the way in which con-
sumers behave when confronted with missing
information.This descriptive research stream
considers the way consumers infer missing pro-
duct information (Bradlow, Hu, and Ho 2002;
Ross and Creyer 1992), the effect of missing
information on choice (Kivetz and Simonson
2000), and the way missing information affects
consumer inferences and evaluations (Dick,
Chakravarti, and Biehal 1990; Johnson and
Levin 1985).

The second stream prescribes techniques for
imputing or handling the missing information.
This stream suggests how one should make
inferences when confronted with missing infor-
mation.The literature provides several prescrip-
tive techniques for imputing missing informa-
tion when the pattern of “missingness” has a
particular structure (cf. DeSarbo, Green, and
Carroll 1986; Erdem, Keane, and Sun 1999).
For example, Kamakura and Wedel (1997) pro-
pose techniques for fusing together data from
two groups of subjects when there are few vari-
ables in common between the groups. Cipra
and Trujillo (1995) impute missing information
by exploiting structure in time series data.
Steenburgh, Ainslie, and Engebretson (2003)
and Bronnenberg and Sismeiro (2002) impute
missing information by exploiting spatial struc-
ture in geographic data.

Prescriptive techniques for dealing with missing
information when there is no specific structure
to the missingness include techniques designed

to estimate a particular type of model and tech-
niques designed to simply impute the missing
information. For example, in the presence of
missing values, Kamakura and Wedel (2000)
provide a technique for estimating a factor
model, and DeSarbo, Young, and Rangaswamy
(1997) show how to estimate an MDS model.1

In this paper, we focus on the final component
of the research on missing information: pre-
scriptive techniques for imputing missing infor-
mation when there is no special structure to the
missingness. As have earlier researchers (Gleason
and Staelin 1975; Schafer and Graham 2002),
we will compare existing imputation techniques
to provide guidance in the selection of an impu-
tation technique. Like earlier studies (Gleason
and Staelin 1975; Schafer and Graham 2002),
we will compare techniques in terms of the
accuracy of their imputations, the accuracy of
data parameters (i.e., the means, variances, and
covariances) implied by the imputations, and
the accuracy of the model parameters estimated
with imputed data. We go beyond earlier studies
to compare techniques in terms of the quality of
the decisions implied by the models estimated
on imputed data.

Like earlier studies (Gleason and Staelin 1975;
Schafer and Graham 2002), we investigate the
robustness of the imputation techniques using
simulated data. We go beyond existing research
to investigate the robustness of the imputation
techniques using actual customer data. Like
earlier studies, we consider the impact of dif-
ferent factors on the relative performance of
imputation techniques. In particular, we vary
sample size, average correlation in the data, ex-
tent of missing information, and the missing
value mechanism (whether the data are missing
completely at random [MCAR] or missing at
random [MAR]). While existing studies com-
pare techniques by noting differences in accuracy
across techniques, we go beyond those studies
to provide statistical tests of those differences.

In this paper, we begin by describing the impu-
tation techniques, the criteria on which we
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compare technique performance, and the dim-
ensions used to test the robustness of perform-
ance comparisons. We then discuss our method
of analysis and our statistical tests. Finally, we
present results from a simulation study and from
the analysis of real customer data. We structure
the simulated data to be consistent with the real
customer data.

We consider the problem of a financial services
company who must decide to whom it should
offer a credit card.This company has a sample
of customers for whom it knows both demo-
graphic attributes (predictors) and creditwor-
thiness (dependent variable). Based on this sam-
ple, the company must estimate a model that
can be applied to readily available demographic
information in a new target market in order to
assess the (less readily available) creditworthi-
ness of customers in the new market. As is often
the case, there are customers in the original
sample for whom the financial services company
does not have complete demographic informa-
tion. We compare the imputation techniques on
the basis of the accuracy of their imputed values
for missing predictors, the accuracy of data
parameters (i.e., the predictor means, variances,
and covariances) implied by the imputations,
the accuracy of the model coefficients estimated
using the imputed data, and the quality of the
marketing decisions implied by models esti-
mated on the imputed data.

Imputation Techniques

The imputation techniques we consider in this
paper include two simple techniques (complete
case analysis and Mean), three techniques that
exploit the correlation between predictors
(expectation maximization, data augmentation,
and multiple imputation), and a technique that
fills in the missing value for a customer by “bor-
rowing” a non-missing value from a similar
customer (hot deck). In this section, we review
the techniques and summarize their reported
strengths and vulnerabilities.

There are two general ways to handle missing
information.The simplest way  is to drop all
customers with missing information.This
approach is known as complete case analysis
(CCA) and is the default technique for handling
missing information in many popular statistical
analysis software packages such as SPSS and
SAS. Since this technique throws away infor-
mation, we should expect it to perform worse
than other imputation techniques. Alternatively,
the missing information can be “filled in” or
“imputed”.The oldest and easiest technique for
imputing missing information for a particular
variable is to use the mean of the non-missing
values for that variable (Wilks 1932). Unfort-
unately, replacing all missing values with the
mean will at best put values at the center of a
variable’s distribution and produce a down-
wardly biased estimate of a variable’s true vari-
ance and covariance (Little and Rubin 1987).
This problem suggests the application of more
sophisticated imputation techniques.

In trying to impute missing information for a
predictor, the Mean technique only considers
non-missing values for that predictor. If there is
correlation between predictors, one might ex-
pect that an imputation technique that exploits
this correlation would provide a better estimate
of the missing information. Gleason and Staelin
(1975) use linear regression to exploit predic-
tors’ correlations when imputing missing values.
They showed that when the average correlation
between predictors is less than or equal to .2,
the simple technique of mean imputation pro-
vides point estimates and estimates of data par-
ameters that are as accurate as those provided by
regression.

The Mean technique is known to be vulnerable
to the nature of the mechanism causing infor-
mation to be missing. If the mechanism is such
that the probability a value is missing for a cus-
tomer depends on the values of other predictors
for that customer (a pattern known as “missing
at random” or MAR), then one would expect
that the missing values are more likely to come
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from one end of a variable’s distribution. In this
case, the mean of a variable’s non-missing values
will be a biased estimate of a variable’s true mean.
To remove this MAR-induced bias, Schafer and
Graham (2002) impute missing values using a
regression-like technique called expectation
maximization (EM). Dempster, Laird, and
Rubin (1977) show that the EM algorithm will
converge under suitable regularity conditions,
but the rate of convergence slows as the amount
of missing information increases. When facing a
situation with a significant amount of missing
information, Schafer (1997) recommends a
Bayesian analogue to the EM algorithm known
as data augmentation (DA).This technique
leverages information contained in a prior pro-
bability distribution for the data parameters.

In another extension of EM, Rubin (1987)
shows that drawing inferences about parame-
ters estimated on an imputed dataset requires
consideration of both the sampling error and
the error due to imputation. Multiple imputa-
tion (MI) corrects inferences for error due to
imputation by estimating K imputations for
each missing value which results in K imputed
datasets. A single estimate of a parameter of
interest using MI is found by averaging the
parameter estimates across the K imputed data-
sets.2 In principle, MI will work with any impu-
tation technique, but it is most often used in
connection with the DA algorithm. Following
Schafer and Graham (2002), we implement MI
using the DA algorithm.

The final imputation technique we consider is
hot deck (HD).This technique uses the values
of other predictors when imputing the missing
value for a particular predictor variable, but it
does not build a regression-like model as do EM,
DA, and MI. Rather, if the i-th customer is
missing a value for the j-th predictor, hot deck
looks for a “donor” customer most similar to the
i-th customer (i.e., a customer whose predictor
values are closest to those of the i-th customer)
and “borrows” the donor’s non-missing value
for the j-th predictor. Ford (1983) shows that
hot deck provides an excellent estimate of a

predictor variance because hot deck’s imputa-
tions are drawn from a predictor’s actual values.

MI was designed to improve upon DA, which
in turn was designed to perform better than EM.
Hence, we expect MI to perform better than
DA and we expect DA to perform better than
EM. All of these correlation exploiting tech-
niques (MI, DA, and EM) should perform
better than Mean, when the average correlation
between predictors is greater than .2, and per-
form no worse than Mean when the average
correlation is less than or equal to .2. Further,
we expect CCA to perform worse than all of the
other imputation techniques since CCA throws
information away. Finally, we expect imputations
using HD to provide the most accurate estimates
of predictor variances and we expect imputa-
tions using Mean to provide the least accurate
estimates of predictor variances.

Performance Criteria for Comparing
Techniques

We compare imputation techniques using mul-
tiple performance criteria. We compare the
accuracy of their imputed values, the accuracy
of the data parameters (means, variances, and
covariances) implied by the imputations, the
accuracy of model parameters estimated with
the imputed data, and the quality of the mar-
keting decisions implied by models estimated
with the imputed data. We begin with a “com-
plete” dataset D (i.e., a dataset for which we
know, for every customer, the value of the de-
pendent and predictor variables) and then con-
struct an “incomplete” dataset DI by deleting
values of predictor variables. We will refer to a
dataset with deleted values filled in by a partic-
ular imputation technique (T ) as the tech-
nique’s “imputed” dataset DT.

The accuracy of technique T’s imputations for a
particular predictor variable is estimated by
comparing the actual and imputed values for
that predictor variable. In particular, for each
predictor pj, we calculate the error between
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“true” values in D and the imputed values in DT.
We summarize technique T’s imputation accu-
racy for predictor pj by calculating the mean
absolute error across all missing values of pj , and
denote this error by maevalues(DT, pj).

The accuracy of estimated predictor means and
variances (data parameters) are calculated in a
similar manner. For each predictor pj, we calcu-
late the data parameter in technique T’s imputed
dataset DT .This value is compared to the “true”
data parameter for pj calculated in complete
dataset D. We summarize technique T’s ability
to reproduce a data parameter for pj in D by
calculating the absolute error for this data par-
ameter between D and DT . We denote the error
for means and variances on predictor pj by
aemean(DT , pj), and aevariance (DT , pj), respectively.

The accuracy of the estimated covariances for
predictor pj is calculated by considering all
terms cov(pj, pk ), for j ≠ k in the imputed dataset
DT .These values are compared to the “true”
covariances for pj in the complete dataset D. We
summarize technique T’s ability to reproduce
covariances for pj in D by calculating the mean
absolute error between D and DT across all co-
variances terms for pj .This error is denoted by
maecovariance (DT , pj).

Technique T’s imputed dataset DT can be used
to estimate a logit model that relates a customer’s
demographic descriptors to his or her credit-
worthiness.The accuracy of the coefficient esti-
mate associated to predictor pj from this logit
model is calculated by comparing the estimate
derived using the imputed dataset DT to the
“true” coefficient value estimated on the complete
dataset D. We summarize technique T’s ability
to reproduce the logit coefficient for pj in D by
calculating the absolute error for this coefficient
between D and DT , and denote this error by
aecoefficient(DT , pj).

To estimate the quality of the marketing deci-
sion implied by a logit model estimated on
technique T’s imputed dataset DT , we need to
know the number of “hits” and “misses” implied

by the estimated model.The “hits” are the
number of creditworthy people to whom a
credit card is offered and the number of non-
creditworthy people to whom a credit card is
not offered.The “misses” are the number of
creditworthy people not offered a credit card
and the number of non-creditworthy people
offered a credit card.To estimate “hits and
misses,” a score is obtained for each customer in
DT by inserting a customer’s demographic de-
scriptors (some of which may be imputed) into
the logit model estimated using DT.This cus-
tomer-specific score is often compared to a
managerially determined cutoff. If a customer’s
score is above the cutoff, the model suggests
that the customer is likely to be creditworthy
and should be issued a credit card. If a customer’s
score is below the cutoff, the model suggests
that the customer is likely to not be credit-
worthy and should therefore not be issued a
credit card.

We evaluate the quality of the decisions implied
by an estimated model without referring to a
single, managerially determined cutoff. Rather,
we use the area under a Receiver Operator
Characteristic (ROC) curve that summarizes
hits and misses across all possible cutoff values
(Faraggi and Reiser 2002).The ROC method-
ology is derived from signal detection theory
where it is used to determine if an electronic
receiver is able to able to distinguish between
signal and noise (Green 1966).The area under
an ROC curve is often used to evaluate the pre-
dictive accuracy of discrete-valued model, as in
models that determine a managerial decision
such as whether to offer someone a new product
(Bult and Wansbeek 1995). Higher values for
this area are associated with “better” (more
“hits” and/or fewer “misses”) marketing deci-
sions being implied by the logit model. Let
ROC(DT ) be the area under the ROC curve for
the logit model estimated using dataset DT im-
puted by technique T, and let ROC (D) be the
area under the ROC curve for the logit model
estimated on complete dataset D.We summarize
the quality of marketing decisions implied by
technique T’s imputation for dataset D by calcu-
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lating the absolute error |ROC(D) – ROC(DT)|,
and denote this error by aeROC(DT).

Technique Performance Robustness

In order to understand the robustness of the
technique performance comparisons, we com-
pare techniques within different “environ-
ments.”These environments are defined by the
way complete datasets are constructed and by
the way values are deleted to construct the in-
complete datasets. We manipulate four charac-
teristics, or “robustness dimensions,” shown to
effect imputation technique performance in
past studies.Two of these robustness dimensions
relate to the way a complete dataset is constructed:
sample size (i.e., number of customers in the
dataset) and average correlation between pre-
dictors.The other two robustness dimensions
relate to how values are deleted in constructing
the incomplete datasets: proportion of missing
information and the missing value mechanism
(i.e., whether the probability a predictor value is
missing for a particular customer depends on
the values of other predictor variables for that
customer).

Sample size
Schafer and Graham (2002) suggest that EM
and the EM-like imputation techniques (DA
and MI) are best for small sample applications.
Following their guidelines we consider both a
“small” sample (100 customers) and a “large”
sample (250 customers) in our simulation. In
the real customer data, we also include a “very
large” sample (8,940 customers).

Correlation between predictors (simulation
only)
Gleason and Staelin (1975) show the impor-
tance of considering the correlations between
predictors when evaluating different imputa-
tion techniques.Their study suggests that
Mean may perform as well as the correlation-
exploiting techniques (MI, DA, and EM, in
this study) when the average level of correlation
between predictors is .2 or less. In the simula-

tion analysis, we consider five values of average
correlation between predictors (average correla-
tion = .1, .2, .3, .4, .5). For the analysis of real
customer data, we note that the average level of
correlation between predictors in the small data-
sets (N = 100) is .24, in the medium datasets 
(N = 250) is .16, and in the very large dataset 
(N = 8940) is .12. It is important to note that
such low levels of average correlation are common
when considering demographic variables.

Proportion missing
Incomplete datasets are constructed that range
from very little information missing to a large
proportion of information missing. In partic-
ular, we consider six different levels for the pro-
portion of information missing: 5%, 10%, 20%,
30%, 40%, and 50%.

Missing value mechanism
Researchers have considered three mechanisms
that create patterns of missing information like
those observed in practice (Schafer and Graham
2002).The most straightforward of these mech-
anisms, “missing completely at random”
(MCAR), occurs when the probability a partic-
ular value is missing for a customer is indepen-
dent of all other predictor values for that cus-
tomer. A more general mechanism, “missing at
random” (MAR), occurs when the probability
a particular value is missing for a customer is
not independent of the other predictor values
for that customer. For example, this might occur
if customers with more education are less likely
to report their income level than customers
with less education. In this case, the probability
that income is missing for any particular cus-
tomer depends on the education level of the
customer. A more complex mechanism, “miss-
ing not at random” (MNAR), occurs when a
specific, non-random process causes values to
be missing. In this case, one must specify a sepa-
rate model for the MNAR process in order to
impute missing values.

We consider only MCAR and MAR missing
value mechanisms since we have no reason to
posit a specific non-random process causing
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missing information in the customer dataset
under consideration.The MCAR mechanism is
implemented by assigning each value in the
complete dataset an equal probability of being
deleted.The MAR mechanism is implemented
by employing the decision rule for deletion
found in Little (1992). In particular, for each cus-
tomer and predictor variable, we take the sum of
the other predictors for that customer. If the
sum exceeds a predefined cutoff value, then the
predictor variable for that customer is consid-
ered for deletion.

Method of Analysis

Simulation
We wish to compare all pairs of imputation
techniques on all levels of all robustness dimen-
sions. We compare techniques on each of the
two sample sizes (N = 100 and N = 250), five
levels of correlation between predictors (.1, .2,
.3, .4, .5), six levels of proportion missing (5%,
10%, 20%, 30%, 40%, 50%), and two missing
value mechanisms (MCAR and MAR). Hence,
we simulate 2 x 5 x 6 x 2 = 120 different com-
plete datasets (one dataset for each unique com-
bination of levels of robustness dimensions).

To make the simulated data as consistent as
possible with the real customer data, simulated
datasets include five predictors (as we have in
the real customer data). Values for those five
predictors are drawn from a multivariate normal
distribution with means equal to zero and vari-
ances equal to one (to be consistent with the
standardized variables in the real customer data).
The covariance structure is set so every pair of
predictors has a correlation equal to the average
correlation level associated with the dataset.The
value for the dependent variable is constructed
by taking the sum of an equally weighted pre-
dictor and adding a random value drawn from a
logistic distribution with location parameter
equal to zero and scale parameter equal to one.
The resulting sum is transformed to equal one
when the sum is greater than zero (indicating
the customer is creditworthy) and transformed

to equal zero when the sum is less than zero (in-
dicating that this customer is not creditworthy).

For each imputation technique (T) and im-
puted dataset (DT), one value of aeROC(DT) is
calculated and five values (corresponding to
each predictor) of the other error measures are
calculated: maevalues(DT, pj), aemean(DT, pj),
aevariance(DT, pj), maecovariance(DT, pj), and
aecoefficient(DT, pj). Each performance criterion 
is analyzed in two ways. First, an ANOVA
model is estimated with the dependent variable
being the performance criterion and the inde-
pendent variables being imputation technique
(MI, DA, EM, MEAN, HD, CCA) and
robustness dimensions (sample size, average
correlation between predictors, proportion of
missing information, and missing value mecha-
nism). Since our primary interest is in the rela-
tive performance of the different imputation
techniques, the ANOVA model has all main
effects and all two-way interactions with the
technique factor.The ANOVA indicates: (1) if
there are statistically significant differences
between techniques on the performance crite-
rion (i.e., if there is a significant main effect for
technique), (2) if performance differences
change in statistically significant ways across
different levels of a robustness dimension (i.e.,
if there are statistically significant interactions
between technique and a robustness dimension).

The ANOVA does not indicate if a difference
between any two particular techniques on a
performance criterion is statistically significant.
To look for statistically significant differences
between the six techniques for a particular per-
formance criterion, we consider post hoc con-
trast for the (6*5)/2 = 15 technique pairs.3 To
consider interactions, we check for a statistically
significant difference on a performance criterion
between two techniques on a particular level of
a robustness dimension using a post hoc contrast.
Since there are 15 different levels of robustness
dimensions (two sample sizes, five levels of
average correlation, six proportions of missing
information and two missing value mechanisms),
and 15 possible pairs of the six imputation tech-
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niques, there are 225 possible contrasts for each
of the six performance criterion, yielding a total
of 1,265 tests related to interactions.4 Since
these contrast tests are correlated, we use the
conservative Scheffé adjustment to assess statis-
tical significance (Lomax 2001).5

Real customer data
The real customer data contain five demo-
graphic predictors shown to be good indicators
of creditworthiness: home ownership, length of
residence, number of children, number of
adults, and income (Sullivan and Fisher 1988;
Black and Morgan 1998). Since it is common in
the credit card industry to evaluate someone as
creditworthy if he or she has fewer than three
delinquent credit card accounts (Lawrence 1992),
we set the dependent variable to the value one if
the customer has fewer than three delinquent
credit card accounts and to zero, otherwise. We
begin with a complete dataset containing infor-
mation on 8,940 customers.Thirty-six incom-
plete datasets are constructed to reflect a full
factorial combination of three sample sizes (100,
250, 8,940), six proportions of missing informa-
tion (5%, 10%, 20%, 30%, 40%, 50%), and two
missing value mechanisms (MCAR and MAR).
We do not manipulate average correlation be-
cause these data are not generated as in the sim-
ulation.The average level of correlation between
predictors in these datasets ranges from .12 to .24.

As we did with the simulated data, a separate
ANOVA model is estimated for each perform-
ance criterion. Each performance criterion is a
dependent variable with main effects for impu-
tation technique and robustness dimensions
(sample size, proportion of missing informa-
tion, and missing value mechanism) and with
all two-way interactions that include the tech-
nique factor.To look for statistically significant
overall differences between the six techniques
for a particular performance criterion, we con-
sider post hoc contrast for the (6*5)/2 = 15 tech-
nique pairs.6 To consider interactions, we check
for a statistically significant difference on a
performance criterion between two techniques
on a particular level of a robustness dimension

using a post hoc contrast. Since there are 11
different levels of robustness dimensions (three
sample sizes, six proportions of missing infor-
mation and two missing value mechanisms),
and 15 possible pairs of the six imputation tech-
niques, there are 165 possible contrasts for each
of the six performance criterion, yielding a total
of 925 tests related to interactions.7 Since these
contrast tests are correlated, we use the conser-
vative Scheffé adjustment to assess statistical
significance.

Simulated Data Results

Each column in Table 1 represents an ANOVA
model whose dependent variable is the per-
formance criterion listed at the top of the column
and whose independent variables are technique
(imputation technique = MI, DA, EM, Mean,
HD, CCA), sample size (N = 100, N = 250),
correlation (average level of correlation between
predictors = .1, .2, .3, .4, .5), proportion missing
(proportion of information missing = 5%, 10%,
20%, 30%, 40%, 50%), missing value mecha-
nism (MCAR, MAR), and all two-way interac-
tions involving the technique factor.The table
values are the level of statistical significance of
the factor listed in the row whose dependent
variable is listed at the top of the column.
Virtually all effects are statistically significant.
A significant main effect for the technique
factor implies that some techniques perform
statistically significantly better than others on a
performance criterion. A significant interaction
implies statistically significant differences in
techniques’ relative performance across
different levels of a robustness dimension.

In the interest of brevity, we forgo the explo-
ration of significant main effects for each
robustness dimension and forgo the explicit
exploration of the significant interactions. Since
our interest is in the relative performance of the
different imputation techniques, we focus
instead on the post hoc contrasts comparing
techniques’ errors on each level of the robust-
ness dimensions.
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To ease reading, we will say that technique A
“performs better than” technique B on a partic-
ular criterion only when technique A has statis-
tically significantly less error than technique B
on that criterion. We will say that technique A
“performs best” on a particular performance
criterion, only when technique A has statisti-
cally significantly less error than all of the other
techniques on that criterion. Our use of the
phrases “performs worse than” and “performs
worst” should be similarly understood to imply
statistically significant differences.

Contrast analysis for techniques’ overall
error
The relative performance implied by the post
hoc contrast analyses for each technique’s
overall error is summarized in Table 2.The six
sections of Table 2 correspond to the six
performance criteria. Within a section, the first
row reports the results of contrasts involving
techniques in the simulated datasets. (The
remaining rows in each section relate to inter-
pretation of contrasts for techniques in real
customer datasets and will be discussed later.) 

In the first row of the first section of Table 2, we
see that EM is in the column headed “Tech-
nique(s) with Least Error.” Hence, EM provides
the best point estimates across all simulated
datasets (i.e., lowest error for maevalues). In the
same row, HD is in the column headed “Tech-
nique(s) with Most Error,” indicating that HD
provides the worst point estimates. In the
column headed “Neither Least Error nor Most
Error,” MI = DA < Mean indicates that the
point estimates from MI did not have statisti-
cally significantly more or less error than those
from DA. However, both MI and DA provided
point estimates that are better than the point
estimates from Mean.

The first row of each section in Table 2 reports
the relative performance of the different impu-
tation techniques on each of the performance
criteria we study. Continuing to focus on the
first row of each section and scanning down the
final column we see that CCA performs worst
on all criteria other than accurately reproducing
predictor variances (aevariance) and point esti-
mates (maevalues). (Recall that CCA does not
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Independent Variables in
ANOVA Models

Technique
Sample size
Correlation
Proportion missing
Mechanism
Technique x Size
Technique x Correlation
Technique x Proportion missing
Technique x Mechanism

# Observations

maevalues

.000

.000

.000

.000

.000

.000

.000

.000

.000

3,000

maemean

.000

.000

.000

.000

.000

.000

.000

.000

.000

3,600

maevariance

.000

.000

.000

.000

.000

.000

.000

.000

.002

3,600

maecovariance

.000

.000

.000

.000

.000

.000

.000

.000

.002

3,600

maecoefficient

.000

.000

.000

.000

.040

.000

.000

.000

.000

3,420

aeROC

.000

.000

.992

.000

.000

.000

.988

.000

.000

684

Dependent Variable in ANOVA

Table 1
ANOVA Models Using Simulated Datasets
(Each cell reports the level of significance for the row independent variable in the ANOVA with the column
dependent variable.)

* The performance criteria maevalues is not defined for CCA. This results in 3,000 observations for the associated ANOVA model. Also, the logit
models estimated using CCA datasets do not converge in any dataset with 50% missing. Consequently, there are 3,420 and 684 observations for the
ANOVA models associated to maecoefficients and aeROC, respectively. 
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Performance Criterion 

maevalues

Simulated data: all
Simulated: corr = .1
Simulated: corr = .2
Real: N = 8,940
Real data: All
aemean

Simulated data: all
Simulated: corr = .1
Simulated: corr = .2
Real: N = 8,940
Real data: all
aevariance

Simulated data: all
Simulated: corr = .1
Simulated: corr = .2
Real: N = 8,940
Real data: all
maecovariance

Simulated data: all
Simulated: corr = .1
Simulated: corr = .2
Real: N = 8,940
Real data: all
aecoefficients

Simulated data: all
Simulated corr = .1
Simulated corr = .2
Real: N = 8,940
Real data: all
aeROC

Simulated data: all
Simulated: corr = .1
Simulated: corr = .2
Real: N = 8,940
Real data: all

Technique(s) with Least Error  

EM
EM = Mean
EM = Mean*
MI = DA = EM = Mean
MI = DA = EM = Mean

EM
MI = DA = EM = Mean
MI = DA = EM = Mean
MI = DA = EM = Mean = HD
MI = DA = EM = Mean

HD
HD
HD
HD
HD

MI = DA = EM
MI = DA = EM = Mean
MI = DA = EM
MI = DA = EM = Mean = HD = CCA
MI = DA = EM = HD

HD
MI = DA = EM = Mean = HD
MI = DA = EM = Mean = HD
MI = DA = EM = MEAN = HD = CCA
MI = DA = EM = Mean = HD

MI = DA = EM = Mean
MI = DA = EM = Mean
MI = DA = EM = Mean
MI = DA = EM = Mean = HD = CCA
MI = DA = EM = Mean

Technique(s) with Neither
Least or Most Error

MI = DA < Mean
MI = DA
MI = DA

MI = DA < Mean < HD
HD
HD

HD

MI = DA < EM < CCA
MI = DA = EM = CCA**
MI = DA = EM = CCA

MI = DA = EM = Mean

Mean = HD
HD***
Mean < HD

MI = DA = EM = Mean****

HD
HD
HD

HD

Technique(s) with Most Error 

HD
HD
HD
HD
HD

CCA
CCA
CCA
CCA
CCA

Mean
Mean
Mean
MI = DA = EM = Mean = CCA
CCA

CCA
CCA
CCA

Mean = CCA

CCA
CCA
CCA

CCA

CCA
CCA
CCA

CCA

Table 2
Summary of Contrast Analyses for Technique’s Overall Error
(For each performance criterion, a summary of all statistically significant differences is given for: all simulated datasets, simulated datasets with
average correlation = .1, simulated datasets with average correlation = .2, real customer datasets with N = 8,940, and all real customer datasets).

* For maevalues, simulated data, average correlation = .2, Mean also = MI and DA
** For aevariance, simulated data, average correlation = .1, EM < CCA
*** For maecovariance, simulated data, average correlation = .1, MI = HD
****For aecoefficient, all simulated data, Mean < DA



make point estimates and so is undefined for
maevalues.) Scanning down top row entries in the
first column indicates that, except for repro-

ducing predictor variances (aevariance) and
yielding accurate logit coefficients (aecoefficient),
EM is never dominated by any other technique.
Considering errors in covariance estimates
(maecovariance), MI and DA are statistically indis-
tinguishable from EM. Considering the quality
of marketing decisions (aeROC), MI, DA, and
Mean are statistically indistinguishable from
EM. As we speculated in the introduction, HD
performs best and Mean performs worst when
considering the accuracy of predictor variances
(aevariance). Surprisingly, HD also performs best
when considering the accuracy of logit model
coefficients (aecoefficient).

Figure 1 shows the relative accuracy of logit
coefficients estimated with techniques’ imputed
datasets (aecoefficient) by plotting the error in coef-
ficient estimates (aecoefficient) for different levels of
the robustness dimension “average correlation
between predictors.” For values of average
correlation ranging from .1 to .5, coefficient
error (aecoefficient) for CCA is .69, .89, .96, .96, and
1.12, respectively. Rather than illustrate how
badly CCA performs, we chose to scale the y-
axis in Figure 1 to clearly show the relative
performance of MI, DA, EM, Mean, and HD.
As seen in the chart, the error in coefficient
estimates for models estimated using datasets
imputed with MI, DA, and EM grows as the
“average level of correlation between predictors”
grows. In fact, this growth is exactly what one
would expect as multicollinearity (i.e., “average
level of correlation between predictors”) grows.
It is surprising that the accuracy of estimated
coefficients for Mean (for low levels of “true”
correlation) and HD (for high levels of “true”
correlation) are less sensitive to multicollinearity
in the underlying, complete datasets.

Figure 2 relates “true” correlation (average level
of correlation in the complete dataset) to the
average level of correlation in datasets imputed
with different techniques.The average level of
correlation in datasets imputed with HD and
Mean is lower than the “true” level of correlation
between predictors. Hence, it seems the datasets
imputed with HD and to some extent those
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Figure 1
Coefficient Error and Average Correlation in Complete Dataset for
Simulated Data
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Figure 2
Average Correlation between Complete and Imputed Data
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imputed with Mean are able to produce “better”
coefficient estimates because they poorly repro-
duce the “true” correlations between predictors.
With lower levels of correlation between pre-
dictors in the datasets imputed by HD and Mean,
models estimated upon these datasets are less
vulnerable to the wide swings in coefficient est-
imates resulting from highly correlated predic-
tors. It is important to note that the quality of
marketing decisions (i.e., aeROC) implied by “less
accurate” coefficients estimated using MI, DA,
and EM is better than the quality of marketing
decisions implied by the “more accurate” coeffi-
cients estimated using HD.This is consistent
with multicollinearity causing instability in
model parameter estimates without causing the
quality of predictions to degrade.

In summary, the contrast analysis for techniques’
overall error in the simulated data shows that
CCA performs worst for all performance
criteria (for which it is defined) except the esti-
mation of predictor variances (aevariance). When
considering predictor variances (aevariance), HD
performs best and Mean performs worst. For all
performance criteria other than the estimation
of predictor variances (aevariance), EM is never
dominated. MI and DA perform as well as EM
when estimating predictor covariances 
(maecovariance) and MI, DA, and Mean perform as
well as EM when considering the quality of
implied marketing decisions (aeROC). Results 
for the accuracy of logit coefficients (aecoefficient)
are difficult to interpret because of the high
multicollinearity inherent in some of the com-
plete datasets.

Contrast analysis for techniques’ error
within the robustness dimensions
We study the techniques’ error within a robust-
ness dimension (sample size, predictor correla-
tion, proportion missing, or missing value
mechanism) by looking for statistically signifi-
cant differences between techniques on a crite-
rion variable on each level of a robustness
dimension.This generates 225 pair-wise statis-
tical tests for each of the six performance
criteria yielding a total of 1,265 tests as dis-

cussed earlier. We summarize those tests in six
matrices on the left side of Table 3. Each matrix
represents the results for a different perform-
ance criterion.

For the matrix associated with a particular per-
formance criterion, each cell reports a number
reflecting the performance for the technique
listed in the row compared to the performance
of the technique listed in the column. A value of
“100%” means the technique in the row has
statistically significantly more error than the
technique in the column for every level of each
robustness dimension. A value of “0%” means
the technique in the row never has statistically
significantly more error than the technique in
the column for any level of any robustness
dimension. A value between 0% and 100% indi-
cates that the technique in the row sometimes
has statistically significantly more error than
the technique in the column.

The value in any cell in Table 3 is calculated by
considering 15 statistical tests: two tests for the
two different sample sizes, five tests for the five
different levels of correlation, six tests for the six
different levels of proportion missing, and two
tests for two missing value mechanisms. If we
filled in a cell with the number of tests out of 15
for which the technique in a row has statistically
significantly more error than the technique in
the column, those robustness dimensions repre-
sented with more levels (degree of correlation
between predictors with five levels and propor-
tion missing with six levels) would be more
influential in determining the cell value than
would robustness dimensions with fewer levels
(sample size and missing value mechanism 
with two levels each).To balance the influence
across robustness dimensions, we first calculate
the percentage of a robustness dimension’s
levels for which the row technique has statisti-
cally significantly more error than the column
technique. Next, we calculate the average of
these percentages across the robustness dimen-
sions.These average percentage scores are re-
ported in the matrix cells in Table 3. We refer to
a cell value as “the percent of time” the row
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Criterion 

maevalues

aemean

aevariance

maecovariance

aecoefficients

aeROC

Technique

MI
DA
EM
Mean
HD

MI
DA
EM
Mean
HD
CCA

MI
DA
EM
Mean
HD
CCA

MI
DA
EM
Mean
HD
CCA

MI
DA
EM
Mean
HD
CCA

MI
DA
EM
Mean
HD
CCA

MI
---

0%
0%

86%
90%

---
0%
0%

60%
96%

100%

---
0%

29%
96%
0%

65%

---
0%
0%

95%
100%
100%

---
0%
0%
0%

13%
96%

---
0%
0%
0%

88%
92%

DA
0%
---

0%
86%

100%

0%
---

0%
64%
96%

100%

0%
---

29%
96%
0%

65%

0%
---

0%
95%

100%
100%

0%
---

0%
0%

13%
96%

0%
---

0%
0%

88%
92%

EM
88%
88%

---
90%

100%

0%
0%
---

69%
96%

100%

0%
0%
---

96%
0%

60%

0%
0%
---

95%
100%
100%

0%
0%
---

0%
17%
96%

0%
0%
---

0%
88%
92%

Mean
5%
5%
0%
---

100%

0%
0%
0%
---

92%
100%

0%
0%
0%
---

0%
4%

0%
0%
0%
---

31%
43%

4%
4%
4%
---

8%
96%

0%
0%
0%
---

88%
92%

HD
0%
0%
0%
0%
---

0%
0%
0%
0%
---

100%

96%
96%
96%

100%
---

100%

0%
0%
0%

13%
---

48%

53%
48%
53%
43%

---
96%

0%
0%
0%
0%
---

88%

CCA
---
---
---
---
---

0%
0%
0%
0%
0%
---

0%
0%

18%
74%
0%
---

0%
0%
0%
5%
0%
---

0%
0%
0%
0%
0%
---

0%
0%
0%
0%
0%
---

Table 3
Summary of Contrast Analyses of Techniques’ Errors within the Robustness Dimensions

*Cell entries are the average, across robustness dimensions, of the proportion of levels within a robustness dimension for which the row technique has statistically significantly more error
than the column technique. We refer to this as the “percent of time” that the row technique has statistically significantly more error than the column technique. 

Simulated Data

MI
---

0%
0%
0%

100%

---
0%
0%
0%

50%
100%

---
0%
0%
0%
0%

33%

---
0%
0%

61%
0%

50%

---
0%
0%
0%
0%

33%

---
0%
0%
0%
0%

72%

DA
0%
---

0%
0%

100%

0%
---

0%
0%

50%
100%

0%
---

0%
0%
0%

33%

0%
---

0%
67%
0%

50%

0%
---

0%
0%
0%

33%

0%
---

0%
0%
0%

83%

EM
0%
0%
---

0%
100%

0%
0%
---

0%
50%

100%

0%
0%
---

0%
0%

33%

0%
0%
---

72%
0%

61%

0%
0%
---

0%
0%

33%

0%
0%
---

0%
0%

83%

Mean
0%
0%
0%
---

100%

0%
0%
0%
---

50%
100%

0%
0%
0%
---

0%
17%

0%
0%
0%
---

0%
0%

0%
0%
0%
---

0%
17%

0%
0%
0%
---

0%
83%

HD
0%
0%
0%
0%
---

0%
0%
0%
0%
---

94%

39%
44%
72%
83%

---
72%

0%
0%
0%
0%
---

33%

0%
0%
0%
0%
---

6%

0%
0%
0%
0%
---

83%

CCA
---
---
---
---
---

0%
0%
0%
0%
0%
---

0%
0%
0%

17%
0%
---

0%
0%
0%
0%
0%
---

0%
0%
0%
0%
0%
---

0%
0%
0%
0%
0%
---

Real Customer Data



technique was statistically significantly inferior
to the column technique.

To illustrate how a cell value is calculated, con-
sider the fifth cell down in the first column of
Table 3.The cell value of 90% indicates that
HD provides worse point estimates (maevalues)
than MI for most of the levels of the four ro-
bustness dimensions.This value is determined
by noting that HD had statistically significantly
more error than MI for both samples sizes, for
three of five levels of correlation between pre-
dictors, for all of the levels of proportion missing,
and for both MCAR and MAR. An equal-
weighted average of 100%, 60%, 100%, and 100%
yields the 90% reported in the cell.

The order of the techniques in the columns and
rows of each matrix in Table 3 is consistent with
the relative performance one might expect
based on the literature cited earlier in this paper,
i.e., MI  DA  EM  MEAN  HD  CCA
(“ ” indicates less error). For a particular per-
formance criterion, if every statistical test were
consistent with this ordering, then all cells
above the main diagonal would contain zeroes.
We will discuss some of those situations in
which this expected pattern does not hold.

Consistent with Schafer and Graham’s (2002)
concern that techniques focused on accurately
recovering missing values may compromise
their ability to accurately recover data parame-
ters, our results show that techniques’ relative
performances differ across performance criteria.
For example, MI and DA provide more accu-
rate variance estimates (aevariance) than EM 29%
of the time while EM provides better point esti-
mates (maevalues) than MI and DA 88% of the
time.8 Interestingly, even Mean provides better
point estimates than MI and DA 5% of the time.9

Other performance criteria with non-zero
entries above the main diagonal include aevariance
and aecoefficient. As in our discussion of main
effects and as the literature suggests, HD
provides better variance estimates (aevariance)
than other techniques 96-100% of the time and

Mean provides worse variance estimates than
other techniques 74-100% of the time.The fact
that HD provides better coefficient estimates
(aecoefficients) than MI, DA, and EM 48-53% of
the time is a manifestation of the multicollinea-
rity problem discussed in the section on con-
trast analysis for techniques’ overall error. Other
non-zero entries above the main diagonal result
from extreme situations.10

Combining the insights gleaned from simulated
data contrast analysis of both the overall error
and the error within robustness dimensions, we
provide the following summary of results:

1. CCA performs worst on all criteria except the
accurate estimation of predictor variances,
where it is second worst.

2. HD provides the best estimates of predictor
variances.

3. EM provides the best point estimates and the
best estimates of predictor means.11

4. MI, DA, and EM provide the best estimates
of predictor covariances.

5. MI, DA, EM, and Mean provide the best
marketing decisions

Real Customer Data Results

Each column in Table 4 represents an ANOVA
model whose dependent variable is the per-
formance criterion at the top of the column and
whose independent variables are technique
(MI, DA, EM, Mean, HD, CCA), sample size
(100, 250, 8,940), proportion missing (5%, 10%,
20%, 30%, 40%, 50%), missing value mecha-
nism (MCAR, MAR), and all two-way interac-
tions involving the technique factor.The table
values are the level of statistical significance of
the row’s independent variable in the ANOVA
model with the column’s dependent variable.
Many fewer effects are statistically significant
for the ANOVA models using real customer
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datasets than were significant for the ANOVA
models using simulated datasets.This may result
from reduced statistical power (Cohen 1977)
since ANOVA models using real customer data-
sets have fewer observations than ANOVAs
using simulated datasets. In addition, two of the
robustness dimensions do not take on the same
range of values in the simulated and real cus-
tomer datasets.The level of average correlation
between predictors ranges from .1 to .5 in the
simulated datasets while it ranges from .12 to .24
in the real customer datasets. Sample size takes
on only two values (N = 100 and N = 250) in
simulated datasets while it takes on three values
in real customer datasets (N = 100, N = 250, and
N = 8,940). Given that we found few statisti-
cally significant differences between imputation
techniques in low correlation simulated datasets
and in very large sample (N = 8,940) real customer
datasets,12 it is not surprising that there are fewer
statistically significant effects in the ANOVA
models estimated using real customer datasets.

As in the discussion of results from simulated
datasets, we forgo exploration of significant main
effects for each robustness dimension and forgo

explicit exploration of significant interactions.
In discussing post hoc contrasts, we again use the
terms “perform better,” “perform best,” “perform
worse,” and “perform worst” to denote statisti-
cally significant differences between techniques.

Contrast analysis for techniques’ overall
error
The relative performance implied by the post
hoc contrast analyses for each technique’s
overall error is summarized in last row of each
section of Table 2. Note that there are no statis-
tically significant differences between MI, DA,
and EM for any performance criterion. Also, for
all performance criteria except predictor variances
and covariances (aevariance and maecovariance), there
are no statistically significant differences be-
tween MI, DA, EM, and Mean. MI, DA, and
EM perform best for all performance criteria
except the accurate estimation of predictor vari-
ances (aevariance). HD produces the best and
CCA produces the worst estimates of predictor
variances. Finally, similar to results in the simu-
lated data, HD produces the worst point esti-
mates (aevalues) and CCA performs worst on all
other criteria.
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Independent Variables in
ANOVA Models

Technique
Sample size
Proportion missing
Mechanism
Technique x Size
Technique x Proportion missing
Technique x Mechanism

# Observations*

maevalues

.000

.940

.603

.937

.987

.999

.982

900

aemean

.000

.000

.000

.000

.007

.000

.000

1,080

aevariance

.000

.264

.000

.001

.000

.016

.000

1,080

maecovariance

.000

.000

.000

.087

.000

.000

.220

1,080

aecoefficient

.152

.000

.000

.381

.272

.007

.110

1,035

aeROC

.000

.000

.388

.281

.000

.402

.507

207

Dependent Variable in ANOVA

Table 4
ANOVA Models Using Real Customer Datasets
(Each cell reports the level of significance for the row independent variable in the ANOVA with the column
dependent variable.)

* The performance criteria maevalues is not defined for CCA. This results in 900 observations for the associated ANOVA model. Also, the logit models
estimated using CCA datasets do not converge in any dataset with 50% missing. This results in 1,035 observations and 207 observations for the
ANOVA corresponding maecoefficients and aeROC, respectively.



To see that the contrast analysis for techniques’
overall error in real customer datasets is consis-
tent with that from the simulated datasets,
consider the implications of the differences in
the range of predictor correlation values and the
range of sample sizes in the simulated and real
customer datasets.Table 2 reports (second and
third rows of each section) the results for post
hoc contrasts between techniques for the subset
of the simulated datasets in which the average
correlation between predictors is .1 and for the
subset of the simulated datasets in which that
average correlation is .2.The fourth row of each
section of Table 2 reports the post hoc contrasts
between techniques for the subset of the real
customer datasets with “very large samples” (N
= 8,940). Since the average correlation between
predictors in the real customer datasets ranges
from .12 to .24, the results from rows two and
three provide a rough prediction for results in
the real customer datasets (reported in row
five). Since real customer datasets include “very
large samples” (N = 8,940), one might expect
the rough predictions based on results in rows
two and three to be somewhat moderated based
on results in row four.

Considering all of the real customer datasets
(fifth row of the first section of Table 2), point
estimates made by MI and DA do not have
statistically significantly more error than those
made by EM and Mean as one would hypothe-
size based on results from simulated datasets
with the low correlation between predictors
(rows two and three of the first section of Table
2).This may be driven by the fact that in the
“very large sample” datasets (fourth row of the
first section of Table 2), there is no statistically
significant difference in point estimate error
between MI, DA, EM, and Mean. Again, con-
sidering all of the real customer datasets, note
that HD does somewhat better and Mean does
somewhat worse at estimating covariance than
one would hypothesize based on results using
simulated data with low correlation between
predictors. Again, this may be driven by the
similarity of techniques’ performances in the
“very large sample,” real customer datasets.

Contrast analysis for techniques’ error
within the robustness dimensions
We study the techniques’ error within a robust-
ness dimension (sample size, proportion missing,
and missing value mechanism) by looking for
statistically significant differences between
techniques on a criterion variable on each level
of a robustness dimension. As was pointed out
earlier in the paper, we create 165 pair-wise
statistical tests for each of the six performance
criteria yielding a total of 925 tests. We summa-
rize those tests in six matrices on the right side
of Table 3, where each matrix represents the
results for a different performance criterion.
Recall that a cell entry reports the “percent of
time” (as defined earlier) that the row technique
has statistically significantly more error than
the column technique on the criterion variable.

Table 3 indicates that HD provides better esti-
mates of predictor variances than do other tech-
niques 39-83% of the time. MI, DA, and EM
provide better estimates of predictor covari-
ances than Mean 61-72% of the time and better
estimates than CCA 50-61% of the time. MI,
DA, EM, and Mean provide the best point esti-
mates, the best estimates of predictor means,
the most accurate logit coefficients, and the best
marketing decisions.

Differences between results for post hoc con-
trasts of error within robustness dimensions in
the real datasets compared to results in simu-
lated datasets are consistent with the explana-
tions given for differences in results for post hoc
contrasts of overall error presented earlier in
this section.

Combining the insights gleaned from real cus-
tomer data contrast analysis of both the overall
error and of error within robustness dimensions,
we provide the following summary of results:

1. HD provides the best estimates of predictor
variances.

2. CCA performs worst.
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3. MI, DA, EM, and Mean provide the best
point estimates, estimates of predictor means,
logit coefficients, and marketing decisions.

4. MI, DA, EM, and HD provide the best
covariance estimates.

Discussion and Conclusions

Taken together, the results for the simulated
and real customer datasets provide guidance to
marketers concerned with the problem of
missing information. We can unambiguously
advise that one never resort to complete case
analysis (CCA) when confronted with missing
information.This is an important insight given
the fact that CCA is the default treatment for
missing information in popular statistical
analysis software packages.

We can further unambiguously advise that one
use hot deck (HD) when one’s objective is to
estimate predictor variances.There was no situ-
ation in either our analysis of the simulated data
or our analysis of the real customer data in which
another imputation technique produced estimates
of predictor variances that had statistically sig-
nificantly less error than those produced by HD.

Considering the three techniques MI, DA, and
EM, note that it is only for estimates of pre-
dictor variances (in small samples with high
levels of missing information) that MI and DA
produce estimates that have statistically signifi-
cantly less error than those produced by EM. If
one were to follow the suggestion above and use
HD to estimate predictor variances, then note
that for all of the other performance criteria in
our study EM produces estimates that are either
statistically indistinguishable or statistically
significantly superior to those of MI and DA.
Given that MI and DA each require enormous
amounts of computational power (for example,
the MI algorithm required nearly 3,000 times
more execution time than Mean or EM on a
Pentium 4 2.54 GHz computer), it is our re-
commendation that one use EM for estimating

missing values, predictor means, and predictor
covariances.

The question of which imputation technique to
use if one is focused on coefficient estimates
should only be asked in situations in which there
is a low level of correlation between predictors.
As pointed out in the paper, a high level of cor-
relation (i.e., high multicollinearity) implies that
many different sets of coefficient values could
each produce good predictions. For those situa-
tions in which the average correlation between
predictors is .2 or less, our results indicate that
datasets imputed with any of the techniques other
than CCA will yield model coefficients that are
equally good. Given that Mean imputation is
simpler that MI, DA, EM, or HD, parsimony
suggests that Mean imputation be used. If one
is focused on the quality of marketing decisions
implied by a model estimated on the imputed
dataset, MI, DA, EM, and Mean perform
equally well. Again, the law of parsimony sug-
gests that Mean imputation be recommended.

In summary, we recommend that one never use
CCA. In determining which imputation tech-
nique is most appropriate in a given situation,
one needs to consider the analyst’s goal. If the
goal is to choose an imputation technique that
provides the best point estimates for missing
values, the best estimates of predictor means or
covariances, we suggests using EM. If the goal
is to choose an imputation technique that pro-
vides the best estimates of predictor variances,
we suggest using HD. If the goal is to choose an
imputation technique that provides the best
estimates of model coefficients in environments
in which there is low correlation between pre-
dictors, or to choose an imputation technique
that implies the best marketing decisions, we
suggest using Mean. n
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Notes

1. Kamakura and Wedel (2000) also note that the esti-
mated factors can be used to impute missing values.

2. Rubin (1987) shows that creating three to five imputed
datasets provides sufficiently accurate parameter esti-
mates. In our implementation of MI, we use five imputa-
tions for each missing value.

3. Since the performance criterion maevalues is not defined
for CCA, there are only 10 possible technique pairs for
maevalues.

4. Because there are only 10 technique pairs for maevalues,
we get only 150 post hoc comparisons for maevalues. Logit
models estimated using CCA datasets do not converge in
any dataset with 50% missing. Hence CCA cannot be
compared against any other technique in this condition.
This results in 220 possible contrasts for the performance
criteria of aecoefficient and aeROC.

5.The Scheffé test is used to test simultaneous, multiple
contrasts involving treatment effects. It is used for post
hoc hypothesis testing and does not assume the tests are
orthogonal. In this paper, the imputation techniques are
the treatment effects and paired comparisons between two
techniques are the contrasts. According to Scheffé (1959),
we can reject the null hypothesis that there is no difference
between two techniques by first calculating the usual 
F-statistic for a contrast and then comparing that F to 
(K – 1)*Fα;K–1,N–K, where K is the number of treatments,
1 – α is the significance level, and N is the number of
observations. If the F-statistic is greater than (K –
1)*Fα;K–1,N–K, then we can reject the null.

6. Since the performance criterion maevalues is not defined
for CCA, there are only 10 possible technique compar-
isons for maevalues.

7. Because there are only 10 technique pairs for maevalues,
we get only 110 post hoc comparisons for maevalues. Logit
models estimated using CCA datasets do not converge in
any dataset with 50% missing. Hence CCA cannot be
compared against any other technique in this condition.

This results in 160 possible contrasts for the performance
criteria of aecoefficient and aeROC.

8. For aevariance, MI and DA has statistically significantly
less error than EM with 50% of information missing, in
small sample (N = 100), and for MCAR. For maevalues, MI
and DA have statistically significantly more error than
EM for both sample sizes, for all six levels of correlation
between predictors, for both MCAR and MAR, and for
levels of missing information = 30%, 40%, and 50%.

9. For maevalues, Mean has statistically significantly less
error than MI and DA when the average level of correla-
tion between predictors is .1 or .2.

10. For aecoefficient, MI, DA, and EM have statistically signif-
icantly more error than HD for average level of correlation
between predictors = .3, .4, and .5; for the small sample; for
MCAR; and for 5% and 10% of information missing. At
30% of information missing, MI and EM have statistically
significantly more error than HD. For aecoefficients, Mean
outperforms MI, DA, and EM when 50% of the informa-
tion is missing. On maecovariance, HD outperforms Mean
when data are MCAR and CCA outperforms Mean when
the average correlation between predictors is .5.

11. In the contrast analysis for techniques’ overall error for
the simulated data, EM provides better point estimates
and better estimates of predictor means relative to MI and
DA. In the contrast analysis for techniques’ error within a
robustness dimension for the simulated data we see that,
EM provides better point estimates 88% of the time rela-
tive to MI and DA. However, when considering tech-
niques’ relative abilities to provide accurate estimates of
predictor means using interactions, none of the contrasts
between EM and MI or DA were statistically significant.
This reflects the lower statistical power in the tests
involving interactions effects (Cohen 1977).

12.The second and third rows of each section of Table 2
show that there are few statistically significant differences
in low correlation, simulated datasets. Row four of each
section of Table 2 shows that there are very few statistically
significant differences in very large sample, real customer
datasets.
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