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Report Summary 
 
The budget allocation process is one of the marketing manager’s most important tasks. With a 
portfolio of products and various marketing activities with dynamic impact on future sales, the 
profit maximization problem is highly complex. While there are various optimization approaches, 
surveys among managers consistently reveal that they prefer simple allocation rules such as 
percentage-of-sales rules. Surprisingly, given the high managerial importance of budget 
optimization, not much is known about how different methods perform across varying firm and 
market conditions. 
 
In an experimental simulation study, Marc Fischer, Nils Wagner, and Sönke Albers investigate 
the performance of four methods in allocating a fixed marketing budget across products and 
marketing activities to maximize discounted portfolio profit over a five-period planning horizon.   
These methods include a naïve allocation (an equal distribution across all products and activities, 
ignoring heterogeneity in the product portfolio), a percentage-of-sales rule (total budget is 
allocated proportional to the previous year’s sales), an attractiveness heuristic (which 
incorporates information on the profit improvement potential of allocating a higher budget to the 
unit), and a numerical optimization method (which generates optimal budgets for a specified 
problem).  
 
They apply the allocation rules in a multitude of systematically varied scenarios in order to 
analyze and compare their performance as well as their sensitivity to different characteristics of 
the market environment. Their evaluation is based on the profit gained by application of the 
respective allocation rule compared to the optimal solution. Since it would be unrealistic to 
assume that managers know the true values of unobservable demand parameters, they analyze 
the sensitivity of the different rules by imposing an estimation error, which affects the 
parameters of interest. 
 
Their study reveals important insights into the performance characteristics of the methods. A 
theoretically founded heuristic rule, such as the attractiveness heuristic, converges quickly to the 
optimum and is reliable even under extreme conditions. An exact method such as numerical 
optimization is optimal by definition. However, if true demand parameters are not known but 
estimated with an error, numerical optimization no longer produces optimal results. In fact, its 
suboptimality is considerably higher than that of the attractiveness heuristic. The percentage-of-
sales rule produces better allocation results over time and outperforms numerical optimization in 
extreme scenarios with noisy demand parameters. The heterogeneity of marketing 
responsiveness and product age have the greatest influence on the performance of an allocation 
method.  
 
These insights have important implications for managers, most notably that an exact method 
such as numerical optimization is inferior to a decision heuristic if it is applied under the realistic 
assumption that true demand parameters are unknown. Overall, theoretically derived heuristics 
such as the attractiveness heuristic demonstrate a remarkably reliable performance. 
 
Marc Fischer is Professor of Marketing and Market Research, University of Cologne, Cologne, 
Germany. Nils Wagner is Senior Consultant, Simon, Kucher & Partner, Bonn, Germany. Sönke 
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INVESTIGATING THE PERFORMANCE OF BUDGET ALLOCATION RULES:    

A MONTE CARLO STUDY 

 

Introduction  

Setting the right marketing budget has been a key research problem and a top challenge to 

management for a long time. For companies that market a portfolio of products and use different 

marketing activities, it involves finding the optimal total marketing budget and its optimal 

allocation across allocation units such as products and activities. Theoretical and empirical 

research (e.g., Fischer et al. 2011; Mantrala, Sinha, and Zoltners 1992) shows that solving the 

second problem, the optimal allocation of a marketing budget, is much more important. Better 

allocation results in profit gains between 40% and 80%, whereas the optimization of the overall 

budget level improves profit only by 3-5% (e.g., Doyle and Saunders 1990; Mantrala, Sinha, and 

Zoltners 1992). Ideally, both problems are solved simultaneously. Theoretically, this can be 

achieved but at the cost of higher complexity and efforts to guarantee the uniqueness of an 

optimal solution. Practically, companies separate these problems. Top management usually 

determines the overall marketing budget for the next fiscal year first. This budget is then 

allocated across country units, products, marketing activities, etc. (Perrey and Spillecke 2011).  

Consequently, academics have developed methods and algorithms to solve complex 

allocation problems under a restricted marketing budget (e.g., Lodish 1971; Mantrala 2002). 

Unfortunately, these optimization approaches often rely on numerical optimization techniques 

that are not used by managers. In fact, surveys among managers consistently reveal that they 

prefer simple allocation rules such as the percentage-of-sales rule. But these practitioner rules are 

supposed to lead to allocation results that are rather far away from the optimum. Therefore 

research started to find a way out of this dilemma by suggesting new heuristics that are derived 
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from theory and also accepted by managers (e.g., Fischer et al. 2011). In real-world applications, 

these heuristics seem to lead to large profit gains. However, this performance may be due to the 

specific conditions in an application and does not necessarily generalize to other situations. 

To summarize, management can choose among several methods to solve the important 

marketing budget allocation problem. All these methods probably have their advantages and 

disadvantages in terms of optimality, practical applicability, etc. Surprisingly, despite the high 

managerial relevance of budget optimization, we do not know how well the methods perform 

relative to each other across varying market and firm conditions. Given that practitioner rules 

and decision heuristics do not guarantee the optimal solution, the question is how close they 

come to the optimum and how they perform over time when they are repeatedly applied. 

We address this research gap by setting up a simulation experiment in which we analyze 

the performance of four budgeting rules, manipulate all relevant factors, and further examine the 

effect of estimation error. The advantage of simulation experiments is that the true parameter 

values are known, their true relation is given and all characteristics of interest can be fully 

controlled. As a consequence the optimal solution is known and the suboptimality of applying 

the various allocation methods can be assessed. This is not possible with real-life data, simply 

because the real parameters and models are not known. 

Specifically, we consider the naïve budgeting approach of an equal distribution, the most 

common practitioner rule to allocate the budget proportional to product sales, the allocation 

heuristic by Fischer, Albers, Wagner, and Frie (2011), denoted hereafter as FAWF, and a 

numerical optimization solution. Our experimental design considers dynamic effects and 

manipulates all factors and functions that are incorporated into the dynamic profit maximization 

problem. This enables us to derive generalizable results and to analyze the impact of several 
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factors on the performance of each of the considered budgeting methods. As a further aspect we 

create more realistic scenarios by imposing estimation errors on unobservable demand 

parameters. An analysis of the sensitivity to estimation error provides insights into how the 

performance of allocation rules changes if their estimated parameters are exposed to noisiness. In 

particular, our simulation study seeks to answer the following research questions: 

- How do the allocation methods perform relative to the optimal solution? Are 

they close to being “optimal”? 

- How do the allocation methods perform over time, i.e. by being subsequently 

applied? Do they converge to the optimal solution? 

- How reliable are the methods under extreme conditions? 

- If the allocation methods include unobservable demand parameters that need to 

be estimated: How strongly are these methods influenced by estimation errors?  

- Which are the most important factors that influence the performance (and the 

convergence properties) of the allocation rules? 

We follow prior simulation studies in marketing research to develop a Monte Carlo 

design (e.g., Andrews, Ainslie and Currim 2008). Note that these studies have much in common 

with simulation studies in statistics. They usually analyze the performance of empirical methods 

to describe and predict demand behavior such as brand choice under different conditions. Typical 

performance measures are the recoverability of behavioral parameters and predictive accuracy. 

In contrast, our study shares features of simulation studies in operations research. The objective 

is to study the optimality of firm behavior, i.e. to set the “right” marketing budget across 

allocation units, by using different decision rules. As a consequence, the deviation from profit 

maximum and the speed of converging to that optimum are the relevant performance measures. 

The rest of the paper is organized as follows. We continue in section 2 by describing the 

allocation decision problem and summarizing prior literature on marketing resource allocation. 

In section 3, we explain the design of the simulation study. Sections 4 and 5 discuss the results of 

Marketing Science Institute Working Paper Series 5



 

the simulation experiment and identify the drivers of the performance (and the convergence 

properties) of the allocation rules. We close with limitations and suggestions for future research. 

 
Allocating Marketing Resources 

Description of the allocation problem 

Following Fischer et al. (2011), we consider the general allocation decision problem of a 

multi-product, multi-activity firm that wishes to maximize the net present value Π of its product 

portfolio over a planning period T, e.g. five years, by effectively allocating a fixed marketing 

budget R. The firm faces the constrained dynamic profit maximization as formulated in 

equations (1.1)-(1.4): 

   

max
Sit
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T

∑

Discounted net value of product portfolio
  

                           (1.1) 

subject to  
  
Rt = xintn∈Ni

∑i∈l∑ , with Rt - Rt-1 = 0              (budget constraint),                       (1.2) 

  Sint - Sint-1 = -ζ inSint-1 + xint , with xint ≥  0                          (state variable equation),                (1.3) 

 Sint ≥ 0, Sint=0, and Sint=T = SinT
                                          (boundary conditions),                   (1.4) 

where t is the time period with planning horizon T. The product is denoted by i with the index set 

I. The marketing budget can be spent on any marketing activity that uses financial resources, 

such as advertising, sales force, distributional efforts, etc. We denote the type of marketing 

activity or spending category, respectively, by n. Ni is the associated index set that may vary 

across products. The discount rate is denoted by r, 0 < r < ∞. Price p minus marginal cost c 

defines the profit contribution per unit sold. Unit sales q are determined by a function which is 

influenced by the elapsed time since launch of the product ET, the marketing stock S, which is a 
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Ni-dimensional row vector summarizing the activity-specific marketing stocks for product i and 

a row vector of other variables Z (e.g., competitive marketing spending). To reflect the long-term 

impact of marketing spending, the marketing stock S follows a dynamic process that satisfies the 

difference equation (1.3), where x denotes marketing expenditures and 𝜁 is the depreciation rate 

of the marketing stock (Nerlove and Arrow 1962). In addition, the sales function accounts for 

life-cycle effects by including a life cycle function, whose growth parameters are influenced by 

marketing investments. In our experimental setting, we compare different demand and growth 

functions. Boundary conditions (1.4) define the initial and end values for marketing stocks and 

ensure they are nonnegative. Finally, the total marketing budget R is fixed and equals the sum of 

all activity-specific marketing expenditures x. It is assumed to be constant over the planning 

horizon. Top management, however, may decide to adjust the level in future planning cycles. 

The decision problem is general and poses several challenges for finding the optimal 

allocation solution. It is a multi-period decision problem that requires balancing investments in a 

portfolio of products that are in different stages of their life cycle. Young products should receive 

sufficient resources even though their current profit contribution may be negative. Marketing 

expenditures are assumed to have carryover effects. Finally, we assume that firms compete with 

each other and set their marketing budgets in a manner consistent with Nash behavior. 

 

 Research on marketing resource allocation 

Marketing resource allocation problems have attracted a considerable amount of research. 

Wagner and Fischer (2012) review descriptive studies that seek to understand how managers 

actually set marketing budgets. This research stream is largely based on manager surveys. From 

the analysis of 26 survey studies, the authors find that managers basically use simple heuristics 
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and hardly consider exact methods such as numerical optimization approaches. In general, 

managers apply more than one heuristic, whereas the percentage-of-sales rule dominates with 80% 

of entries and is followed by the objective-and-task rule with ca. 50% of entries. At least 15% of 

managers mentioned that they set budgets based on previous year’s budget. 

Mantrala (2002) gives a comprehensive overview of the normative literature and suggests 

that models can be grouped into normative-theoretical models, which produce generalizable 

theoretical results, and decision models that are designed to solve specific problems.  

The literature on normative-theoretical allocation models is very sparse. An early 

contribution is the seminal work by Dorfman and Steiner (1954) who establish optimal 

conditions for marketing mix allocations. Mantrala, Sinha and Zoltners (1992) develop a 

normative-theoretical model to analyze the sensitivity of profit to allocation errors for a product 

that faces different levels of sales responsiveness in two submarkets. They investigate three types 

of sales response functions including a scenario with uncertain demand. Their analysis reveals 

that simple allocation rules such as a sales-proportional budget allocation may lead to substantial 

investment errors under various market scenarios. Clearly, this raises doubts about the usefulness 

of practitioner rules. The study, however, has its limitations. The analysis is focused on a single 

period and a single product. Hence, dynamics and heterogeneity of products in a portfolio that 

differ in age are not considered. So, it is unclear whether the repeated application of a heuristic 

eventually converges to the optimal steady-state solution as was argued by Welam (1982). 

The literature on decision models for allocation problems is much broader. By purpose, 

these models were designed to solve specific decision problems. Consistent with the setup of our 

decision problem, we discuss only models that deal with allocations across products of a 

portfolio. Doyle and Saunders (1990) develop a model that produces the optimal allocation of an 
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advertising budget across media and product categories of a department store. Lodish (1971) 

introduced an integer-programming approach known as CALLPLAN to generate the optimal 

allocation of sales force efforts across products. Bultez and Naert (1988) developed S.H.A.R.P., 

a decision model that allocates a limited shelf space across SKUs. Silva-Risso, Bucklin, and 

Morrison (1999) suggested a decision support system that optimizes manufacturers’ trade 

promotion calendars across brand SKUs. Several other models have been suggested that extend 

these models or focus on similar problems (see Mantrala 2002). 

The vast majority of these models use a numerical optimization algorithm to solve for the 

allocation solution. Interestingly, almost all models optimize current period profits and thus 

ignore dynamic effects. Finally, we note that no allocation model incorporates the dynamics that 

result from competitive interaction. 

A decision model that assumes Nash competition and allocates a fixed budget across 

communication spend categories, countries, and products over a planning horizon to maximize 

multi-period profits was recently suggested by Fischer et al. (2011). The authors, however, do 

not suggest a numerical optimization routine but derive an easy-to-implement heuristic from the 

first-order conditions of the dynamic optimization problem.  

 

Allocation rules investigated in the experimental simulation study 

Following the observation that marketing managers predominantly use simple rules or 

heuristics, respectively, to allocate the marketing budget, we investigate the performance of three 

such rules. We compare their performance with the results of an exact numerical optimization 

method. Specifically, we consider a naïve allocation that distributes the budget equally across the 

product portfolio and the most frequently used practitioner rule, the percentage-of-sales rule. 
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Further, we analyze the performance of the heuristic proposed by FAWF (2011) that is based on 

the optimality conditions of the dynamic profit maximization problem.1 

 Naïve allocation: equal distribution. The most naïve approach is an equal  

distribution across all products and activities, which ignores the heterogeneity of the product 

portfolio. The budget allocation is easily obtained by dividing the total budget by the number of 

allocation units. An allocation unit in our problem formulation (1.1)-(1.4) is defined as a 

specific marketing activity for a specific product. The naïve allocation serves as a lower-bound 

benchmark to compare with other allocation approaches. 

Percentage-of-sales rule. The percentage-of-sales rule proposes to set the marketing 

budget as a specific percentage of previous year’s sales. Applying this rule to a portfolio implies 

that the total budget is allocated proportional to product sales, i.e. products with a greater sales 

level get a larger proportion of the marketing budget and vice versa.2 Because the rule makes no 

recommendation for the allocation of the product budget across marketing activities we simply 

assume equal shares for them. 

Attractiveness allocation heuristic by FAWF (2011). FAWF (2011) propose to allocate 

the budget for marketing activity n of product i proportional to its allocation weight w: 

  

xint
FAWF =

wint

w jmtm∈N j
∑j∈l∑ Rt , ∀i ∈ I, n ∈ Ni, t ∈ 0, T⎡⎣ ⎤⎦

           (2.1) 

 
with 

  

wint = ε in,t-1 r +1−δ in( )
Long-term marketing effectiveness
  

⋅cmi ⋅RVi,t-1

Profit contribution
  

⋅    ρit    
Growth potential


,            (2.2) 

where 

x!"#!"#! : Marketing budget for marketing activity n and product i in period t; 
w!"# : Heuristic allocation weight for marketing activity n and product i in period t; 

                                                
1 Note that the naïve allocation implies constant product budgets under a fixed total budget. It is therefore a 
2  Note that while the percentage applied across products is the same within a year it does not need to be constant 

across years.  
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Rt : Total budget to be allocated in period t; 
r : Discount rate (capital cost of firm, strategic business unit, etc.); 
δin : Carryover coefficient of marketing activity n for product i (with δin = 1- ζin); 
εin,t-1 : Short-term sales elasticity with respect to product i’s marketing expenditures on 

activity n available from last year; 
cmi : (Percentage) contribution margin for product i; 
RVi,t-1 : Revenue level of product i available from last year;  
ρit : Multiplier to measure the growth potential of product i in period t; 
i = 1, 2, …, Ik (index for products);  
n = 1, 2, …, Ni (index for marketing activities); and 
t = 1, 2, …, T (index for periods).  

This allocation heuristic is directly derived from the optimality conditions that need to be 

satisfied for solving the dynamic optimization problem (for details see FAWF 2011). Basically, 

the rule teaches to allocate the total budget proportional to the relative attractiveness of an 

allocation unit, whereas its attractiveness is represented by the allocation weight w. For this 

reason, we call this rule an “attractiveness allocation heuristic”. The allocation weight 

incorporates information on the profit improvement potential that results from assigning a higher 

budget to the allocation unit. This information includes the long-term marketing effectiveness of 

a product’s marketing activity, the product’s profit contribution level, and its growth potential.  

FAWF (2011) suggest approximating the growth potential ρ by a multiplier that divides 

expected product revenues in 5 years (planning horizon) by its current revenue level. In our study, 

we follow FAWF (2011) by computing the expected product revenues based on the parameters 

of the growth function, which we specify subsequently. Note that the percentage-of-sales rule is 

a special case of Equation (2.1) if long-term marketing effectiveness, contribution margins, and 

growth potential multipliers are equal for all products. For application of the attractiveness 

allocation heuristic, r, cm, and RV are usually readily available from internal firm records, while 

δ, ε, and ρ must be estimated, e.g., by specifying an econometric model (FAWF 2011). 
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Numerical optimization. We employ a numerical optimization routine to obtain a unique 

solution to the dynamic optimization problem stated in equations (1.1)-(1.4). For this procedure, 

we need to specify the demand function q(ET+t,S,Z) and provide parameter values for r, p, c, 

etc. We then solve the optimization problem by applying the enhanced Generalized Reduced 

Gradient (GRG) 2 algorithm implemented in the Premium Solver Platform of Frontline Systems 

(for details, see Lasdon et al. 1978). The nonlinear optimization algorithm GRG2 iteratively 

varies the marketing allocation to maximize total discounted profits. It stops if the relative 

change in the objective is less than the convergence tolerance for the last five iterations. We set 

the convergence tolerance to the value of 10-10. The constraints of our maximization problem are 

classified as active when they are within the range of 10-12 of one of their bounds. 

Since we do not have a closed form solution, we numerically compute the Nash 

equilibrium in our competition scenarios by iteratively optimizing the budget allocation of one 

firm while holding the allocation of the competitor constant. When we apply this method 

consecutively for both competitors, we reach the Nash equilibrium if none of the competitors can 

improve its solution (Harcker 1984). 

The big advantage of numerical optimization is that it generates optimal budgets for the 

specified problem. A disadvantage in practical application is, however, that the user must 

correctly specify the demand function and know the parameter values. While numerical 

optimization is always superior to heuristics under full information, it is interesting to compare 

the performance of the methods under more realistic conditions when demand parameters (e.g., 

sales elasticities) are subject to estimation error. An adaptive dynamic allocation approach that 

updates information on demand parameters might be able to deal with the uncertainty. The 

development of such an algorithm for the dynamic budget allocation under Nash competition is a 
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contribution in its own and beyond the scope of this paper. It would also be unfair to compare the 

attractiveness heuristic (2.1)-(2.2) with an adaptive numerical optimization approach as it was 

derived under the assumption that the true demand parameters are known. 

 
Experimental Design 

Setup of the decision problem  

We assume a firm using two types of marketing activities to promote sales of a product 

portfolio with four products. Simulation runs with larger portfolios and more marketing activities 

did not reveal significant differences compared to the results obtained from this firm setting but 

exponentially increase computation time. We assume the firm sets the total marketing budget at 

the end of each year. The task is then to find the optimal allocation of this budget across the four 

products and two activities, i.e. in total an allocation decision for eight allocation units has to be 

made. The discounted profit over the next five years is the objective criterion (see Equations 1.1-

1.4 again). The budget planning process recurs every year. The firm may revise allocation 

decisions based on new market information that results from competitor moves, as an example.  

We note that FAWF (2011) also report on a small simulation study. The objective of their 

study is to support the convergence of the proposed heuristic. As a result, they focus on just this 

heuristic and consider only 16 different market conditions. Our objective is to compare the 

performance of 4 allocation methods including numerical optimization with noisy demand 

parameters. The set of experimental factors is much broader leading to 1,024 different market 

conditions. 
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Data generation without estimation error 

We design a Monte Carlo experiment, in which we experimentally manipulate 9 factors 

that can be divided into the following 5 groups: 

1. Market response model: multiplicative model or modified exponential model;  

2. Growth model: symmetric or asymmetric growth function; 

3. Product characteristics: homogenous or heterogeneous values for 5 characteristics, 

namely sales elasticities, marketing carryover coefficients, sales levels, growth 

parameters, and product ages; 

4. Competitive situation: no competition or Nash competition; and 

5. Initial budget allocation: equal or proportional-to-sales initial allocation across 
products 
 

We add a 10th factor subsequently when we introduce noisiness into demand parameters. 

Group 1, 2, 4, and 5 each includes one factor with two levels. Group 3 includes 5 factors, each 

with two levels. The full factorial design produces 29 = 512 experimental conditions under which 

we use the heuristic rules and numerical optimization to generate allocation decisions. Adding 

parameter noisiness later increases the number to 1,024 conditions. Recall that the objective is to 

maximize discounted profit over the next five years. Consistent with our setup of the decision 

problem, we generate allocation decisions and the resulting discounted profit for 10 consecutive 

planning periods. Hence, we observe 512 × 10 = 5,120 allocations and their associated 

discounted profits, which we compare with the optimal solution. The observation of the 

performance of the decision rule over 10 planning periods enables us to investigate the 

convergence properties of the rule. 

Factor 5 has no relevance when using the naïve and the percentage-of-sales rules. As a 

result, the number of total allocation decisions reduces to 28 = 256 and 256 × 10 = 2,560, 
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respectively, in these cases. Since we assume that the true values of all parameters are known, 

the numerical optimization method by definition yields the true optimum. 

Market response model. Hanssens, Parsons, and Schultz (2001) discuss a variety of 

response functions that have been used in market research. The shape of the response function 

may affect the optimum and thus a rule’s performance (Albers 2012). Note that models, which 

assume linear or increasing returns to scale, are not eligible because the optimal budget for an 

allocation unit would be zero or equal to the total budget. We therefore choose functional types 

that experience diminishing returns for higher levels of spending. Specifically, we use the 

multiplicative model and a modified exponential model. To keep notation low, we do not use 

indices for the factor levels. Unit sales q for product i in equation (1.1) are specified for the 

multiplicative model as follows: 

 qit = ai ⋅S1it
b1i ⋅S2it

b2i ⋅Scit
bci ⋅g ETi+ t, S( ) ,              (3.1) 

where ai is a scaling constant, and b1i and b2i are sales response parameters that determine 

marketing responsiveness with respect to own marketing stock variables S1 and S2. SC and bCi 

measure the competitive total marketing stock and its cross-effect, respectively. g(⋅) represents 

the growth function, which we discuss subsequently. Sales elasticities, which we need as input 

for the attractiveness heuristic, are equal to the power coefficients. Note that they already 

measure the long-term impact of marketing expenditures. To obtain short-term effects, we need 

to multiply them with ζin, the decay coefficient from the difference equation (1.3). We use this 

equation to compute the marketing stock S. The scaling constant ai is set in a way that it 

corresponds to the assumed initial sales levels, given all other variables and parameters for (3.1).   

The multiplicative response model is by far the most frequent aggregate response model 

found in empirical research (Hanssens, Parsons, and Schultz 2001). It shows diminishing returns 
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for response parameters between 0 and 1 and accommodates interaction effects among marketing 

activities. However, this specification has its limitations. It assumes constant elasticities and does 

not accommodate a saturation level for sales.  

The modified exponential model allows for these effects and has seen several empirical 

applications to marketing spending models (Hanssens, Parsons, and Schultz 2001): 

 
qit =Mi 1-exp b1i S1it +b2i S2it +bci Scit( )⎡

⎣⎢
⎤
⎦⎥  g ETi  + t, S( )  ,            (3.2) 

where Mi is the market potential for product i and all other terms are defined as earlier. The 

square root of the marketing stock avoids allocation solutions where the budget is fully invested 

in only one of the two marketing activities, which are considered unrealistic by managers. 

Market potentials and response parameters are chosen in a way that they correspond to the 

assumed initial sales elasticities and product sales levels. 

 
Growth model. The growth model describes the life cycle of a product. Fischer, Leeflang, 

and Verhoef (2010) show that marketing investments have the power to significantly shape the 

life cycle, i.e., the growth potential of a new product. The authors derive several parametric 

growth functions from a generalized growth model and differentiate between symmetric and 

asymmetric life cycles. We adopt their specifications for a symmetric life cycle and an 

asymmetric life cycle. Both specifications are highly flexible and allow capturing a multitude of 

different shapes and thus represent most forms of growth patterns observed in empirical studies: 

 
g ETi +t, s⎡
⎣

⎤
⎦  = λ(S) ⋅  (ETi+t)+ η(S) ⋅  (ETi+t)2 ,  (symmetric model)         (4.1) 

 
g ETi+t,s⎡⎣ ⎤⎦= (ETi+ t)λ (S) ⋅  exp η(S) ⋅  (ETi  + t)2⎡

⎣
⎤
⎦

, (asymmetric model)         (4.2) 

 
where λ and µ are the growth parameters which determine the shape of the life cycle in terms of 

their time-to-peak sales as well as their height-to-peak sales. Following Fischer et al. (2011), the 
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growth parameters λ and η are influenced by the marketing stock according to 

 λ(S) = λ! + .005 ∙ ln  (S), and η(S) = η! + .00005 ∙ ln  (S). The parameters λ! and η! 

determine the life cycle when virtually no marketing investment is made. We set their values so 

that the time-to-peak sales and the height-to-peak sales are the same irrespective of the type of 

growth model. 

 Product characteristics. There are five product characteristics for which we create a 

situation of homogenous or heterogeneous parameter values across products (see Table 1; 

Tables follow References throughout.). Considering the profit maximization problem of (1.1)-

(1.4), one could also think of varying the discount rate and the profit contribution margin. We 

did not do that because it does not generate new insights but only increases computational 

burden. Changes in the discount rate affect all products in equal measure. So, optimal 

allocations do not change much unless the rate is unrealistically high. Because profit margins 

just scale sales downwards or upwards, their variation does not add explication beyond varying 

the revenue level, which we do. We now discuss the experimental factors in detail. 

Sales elasticity. We assume two marketing activities for each product that could be sales 

force and advertising, for example. Motivated by meta-analyses we choose an average elasticity 

of about .31 for sales force (Albers, Mantrala, and Sridhar 2010) and of .15 for advertising 

(Sethuraman, Tellis, and Briesch 2011). To reduce computational burden we vary only the sales 

force elasticity while keeping the advertising elasticity constant as this satisfies heterogeneity 

across marketing responsiveness. 

Carryover coefficient. We set the average carryover coefficient to .5, which is the 

generalized value found in meta-analyses (e.g., Sethuraman, Tellis and Briesch 2011), and vary 

this value between .4 and .6. Larger carryovers are unrealistic for annual data and often do not 
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give a unique solution. Smaller values are less interesting because they take out the dynamics, 

which we want to analyze.  

Sales level. The sales level defines how much sales of the focal product are generated in 

the starting period. On average, we assume a sales level of 2.5m that varies between 1m and 4m. 

Growth parameter. Following Fischer, Leeflang and Verhoef (2010), we assume that 

products reach their peak on average after 11 years and end their life cycle after approximately 

25 years. In the asymmetric growth model, the parameter set λ!= 1.1 and η!= -.1 satisfies this 

assumption. In the symmetric model, the parameter η! needs to be adapted to -.05. Again, to 

reduce computational burden, we only vary one growth parameter, λ!.  

Product age. Generally, we assume that products are 3 years old in the initial period. We 

vary ages from 1 to 4 years. After 10 planning cycles, the oldest product will be in the market for 

20 years. 

Competitive situation. Assuming Nash competition, we simulate the dynamic game for 

two firms with a portfolio of 4 products and 2 marketing activities. Both firms face the same 

profit maximization problem (1.1)-(1.4). Each product has a direct competitive product in the 

portfolio of the other firm. One firm is exposed to all possible combinations of experimental 

factors. We randomly assign experimental conditions to the competitor firm. Trying all possible 

combinations across the two competitors yields up to 65,536 experimental conditions and 

655,360 profit simulations depending on the rule, which increases computation time extensively 

without generating substantial new insights. 

Our sales response functions (3.1) and (3.2) incorporate the influence of competitive 

marketing via the total marketing stock SCi of the competitive product of product i and the cross-

Marketing Science Institute Working Paper Series 18



 

effect bCi. We set the competitive marketing stock elasticity εC to -.10 across all products (e.g., 

Chintagunta and Desiraju 2005).  

Initial budget allocation. We need to define the allocation of the total budget at the 

beginning of the very first decision cycle to initialize the marketing stocks for products and 

activities. Here, we use either the naïve rule or the percentage-of-sales rule to generate the initial 

budget allocation prior to the start of the simulation experiment. Dividing these budgets by the 

product-specific decay coefficient produces the steady-state stock levels associated with the 

initial budget allocation. 

In the simulation, we change the initial budget allocation only for the attractiveness 

heuristic and the numerical optimization. For the naïve and the percentage-of-sales allocation 

rules, the initial allocation corresponds to the rule that is assumed in the decision process. 

 

Data generation with estimation error 

The assumption that managers know the true values of unobservable demand parameters 

is probably very unrealistic. For that reason, we impose an estimation error on demand 

parameters and generate data under all 512 experimental conditions again. Specifically, we 

impose an error on the response parameters for the two marketing activities b1 and b2 and on the 

growth parameters λ0 and η0. We do not consider an error for the carryover coefficient because 

that coefficient just scales short-term responsiveness to long-term responsiveness adding no 

additional insight but increasing computational complexity. 

The simulation error is randomly generated for each parameter by drawing a number 

from a symmetric triangular distribution with the lower limit of -25 % of the parameter value and 

an upper limit of +25 % of the parameter value. A range of 25% is even larger than the standard 
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deviation for generalized effects found in meta-analyses (e.g., Albers, Mantrala, and Sridhar 

2010; Sethuraman, Tellis, and Briesch 2011). Specifically, the estimated parameters are obtained 

by: 

   µEP  = µTP  + ξ ,   ξ    T (-0.25µTP , 0.25µTP )                 (5) 

where µEP is the estimated parameter value, µTP the true parameter value, and ξ  is  the  error  term. 

We use the triangular distribution to avoid that implausible values (e.g., negative response 

parameters) are generated that may happen with extreme value distributions. 

To reduce overall computation time we use the technique of common random numbers, 

which is widely used in the simulation literature (Kleijnen and Groenendaal 1992). It requires 

taking the same set of random numbers for all simulation runs within a replication. This 

guarantees that all variations in the simulation outcome are only due to desired changes in the 

experimental variables and not due to random changes in the simulation environment. The 

random numbers only vary across replications. Consistent with previous simulation studies (e.g., 

Andrews, Ainslie and Currim 2008), we generate a total of three replications. This low number is 

sufficient because the purpose is not to simulate profit outcomes from realizations of a random 

variable. We rather want to understand the effect of an erroneous input variable, whereas the 

error should not be imposed arbitrarily but randomly chosen from a distribution. 

 

Measure of performance 

The key single objective is profit maximization. Thus, our performance measure 

(suboptimality) is defined by the extent to which discounted profits under a specific allocation 

rule differ from the profit generated with the true optimal allocation:  

 
Dev_π t  = π t

optimal  - π t
rule( )  / π t

optimal                  (6) 
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where Π optimal is the discounted profit generated with the optimal budget allocation and Π rule is 

the discounted profit that results from budget allocation according to a specific rule.  

Our performance measure is indexed by t because we simulate an annually recurring 

budget planning process. For the first planning cycle, discounted profit is obtained from years 1-

5, for the second cycle from years 2-6, etc. We later also investigate the speed of convergence 

towards the optimal solution as a further performance characteristic. 

 

Results 

Performance of rules for demand parameters without error 

The following results discussion addresses our first three research questions. We first 

report on each rule’s degree of suboptimality. We then evaluate their convergence toward the 

optimal solution and finally discuss the rules’ performance under extreme conditions (reliability 

of rule). 

Degree of suboptimality. We assess the degree of suboptimality of an allocation rule by 

its average deviation from optimal profit across all market, firm, and competitive conditions. We 

use the term optimal profit to characterize the profit generated with the true optimal allocation. 

Assuming that the true demand parameters are known, numerical optimization produces the 

optimal solution. The profits generated with the other three methods deviate from the optimal 

profit. Table 2 shows the overall means and medians by rule and type of competition. 

Under monopoly, the naïve rule is rather far away from generating optimal profits with an 

average deviation of 20.7%. The percentage-of-sales rule comes closer but still shows an average 

deviation of 10.3%. The best result is generated under the attractiveness heuristic that comes 

very close to the optimal profit by an average deviation of just .6%. Results are similar under 
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Nash competition. The attractiveness rule is still very close to the optimal profit with only .7% 

average profit deviation. Profits under the percentage-of-sales rule deviate on average 8.7% from 

optimal profit. The deviation reaches 22.0% under the naïve rule. 

Convergence of rules. Table 2 shows the average deviations from optimal profit across 

experimental conditions for each planning cycle. Results for the naïve rule suggest that 

performance deteriorates over time. While the mean profit deviation is 18.5% under monopoly 

(19.4% under Nash competition) in the first decision period, it increases to 22.2% (23.7%) in the 

last period. In contrast, results for both the percentage-of-sales rule and the attractiveness 

heuristic improve over time (see table 2 for details). Based on the simulation results alone, we 

cannot say whether the methods converge to the true optimum or some other boundary value. 

According to Fischer et al. (2011), the true optimum is likely to be the convergence limit for the 

attractiveness heuristic, which is a contraction mapping method that replaces an allocation 

subsequently by allocations closer to the true optimum. Indeed, mean deviations from optimal 

profit reduce at a much higher annualized rate of -21.2% under monopoly (-22.1% under Nash 

competition) for the attractiveness heuristic compared to a rate of -1.4% (-3.1%) for the 

percentage-of-sales rule. 

Reliability of rules. The managerial value of average performance numbers is limited 

since it is not clear how the decision rule performs under extreme conditions. We consider a 

decision rule as reliable if the variance of profit deviations across market conditions and the 

maximal deviation under worst conditions are small. Table 2 presents the overall standard 

deviation, the overall maximum, and the maximum in the last decision period for our key 

performance measure. 
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The results suggest that the naïve rule is not only largely suboptimal but also highly 

unreliable. Standard deviation in profit deviations amounts to 10.2% under monopoly (9.3% 

under Nash competition). The maximal deviation overall and in the last decision period is as high 

as 44.4% (40.0%). Results are somewhat better for the percentage-of-sales rule but not small (see 

table 2 for details). Standard deviation and maximal deviation from optimal profit are lowest for 

the attractiveness heuristic. The attractiveness heuristic appears to be quite reliable. Its standard 

deviation of the performance measure amounts to only .8% under monopoly (.9% under Nash 

competition). The maximal deviation from the profit optimum across 5,120 decisions is only 

5.7%. Due to its convergence property, this distance even reduces to only 1.2% in the last 

decision period. 

 

Performance of rules for demand parameters with error 

We now discuss results for conditions when true parameters for marketing responsiveness and 

product growth are unobservable and subject to error. Hence, we address the fourth research 

question that asks for the impact of estimation error on the performance of rules. Since only 

numerical optimization and the attractiveness rule make use of this information the discussion is 

limited to these two methods. 

Table 3 reveals a remarkable result that may appear counterintuitive at first glance. 

Across all evaluation criteria, we note that numerical optimization performs worse than the 

attractiveness heuristic. Numerical optimization results are no longer optimal but, on average, 

deviate from the optimal profit by 2.9% under monopoly. Results do not improve from the first 

to the last decision period but get worse (see table 3 for details). The method also does not 
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appear to be reliable with a high maximal deviation from optimal profit of 24.6%. The statistics 

are even worse under competition. 

The performance statistics for the attractiveness heuristic also decline compared to the 

situation without noisy demand parameters. However, the decline is modest. Profits in the final 

decision period deviate from optimal profit, on average, only by .4% under monopoly (.5% under 

Nash competition). This is an improvement of more than 85% over the results obtained with 

numerical optimization. 

How can we explain this sharp difference in the performance of the two methods? Both 

methods process demand parameters that are erroneous. None of the two methods was designed 

as an adaptive method with the purpose to actively handle the uncertainty in demand parameters, 

e.g., by incorporating some form of updating process. As a result, both methods still process the 

erroneous information in every new decision period again. It appears, however, that the 

attractiveness heuristic is able to incorporate feedback from the market in terms of actually 

realized product sales of the previous decision period. Note that this information goes directly 

into the allocation weight (see again Equation 2.2). Even though the elasticity and growth 

multiplier estimates are still not the true ones, previous period’s sales carry information about 

their true values. In contrast, the numerical optimization algorithm cannot use such feedback but 

needs to fully rely on the noisy parameters. The error seems to propagate across subsequent 

planning periods. Hence, the attractiveness heuristic’s disadvantage of not using implicit optimal 

sales levels, which are part of the optimality condition, but actual past sales turns into an 

advantage if demand parameters are noisy. 
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Influence of Experimental Conditions on the Performance of Rules 

Analysis of main effects 

In this section, we address the last of our 5 initial research questions. Specifically, we 

want to understand which experimental factors drive the suboptimality of allocation methods 

most, whether this affects all methods similarly, and how the influence of a factor develops over 

time. 

Table 4 presents the mean deviations from optimal profit by rule and experimental 

condition. Significance levels for mean differences between factor levels are denoted with an 

asterisk. A large mean difference between levels suggests that the associated factor has a greater 

influence on performance compared to other factors. With this interpretation in mind, it is 

apparent from the table that there is no single market, firm, or competitive factor that stands out 

from all other. However, we find that product heterogeneity in terms of marketing 

responsiveness and product age are among the most important drivers of performance across 

methods. Heterogeneity of sales elasticities leads to significantly larger deviations from optimal 

profit than homogenous elasticities for the naïve rule (Δmean = +11.9%), the percentage-of-sales 

rule (Δmean = +8.7%), and the attractiveness heuristic (Δmean = +.2%). If product ages are 

heterogeneous in the portfolio the mean deviation from optimal profit is especially large for 

numerical optimization (Δ mean = 13.9%) and the naïve allocation rule (Δmean = 10.5%) and 

relatively large for the percentage-of-sales rule (Δmean = 1.4%) and the attractiveness heuristic 

(Δmean = .2%). In addition, the existence of an estimation error appears to drive deviations from 

optimal profit for both numerical optimization (Δmean = 3.0%) and the attractiveness heuristic 

(Δmean = .3%). Recall that this factor does not apply to the other two methods. 
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Interestingly, we find that competition, initial conditions such as the heterogeneity in 

product sales levels and the initial budget allocation, as well as the type of the growth model and 

the response model are less relevant for driving the performance of the allocation methods. Mean 

differences are generally small, sometimes even insignificant (p > .05). The exception is that the 

heterogeneity of product sales levels largely impacts the performance of the naïve allocation 

(Δmean = 7.8%). Similarly, the type of market response model makes a difference for numerical 

optimization (Δmean = 4.0%) and the percentage-of-sales rule (Δmean = 2.0%). 

 

Analysis of interactions with time 

Specification of regression model. An important question is whether our conclusions 

from the univariate test of mean differences between factor levels holds in the multivariate case, 

which considers the joint role of all experimental factors together. In addition, we are interested 

in the interaction of experimental factors with time, i.e., whether their impact on rule 

performance changes over time. For this purpose, we specify the following regression model 

and estimate the model for each method: 

  

Dev_π dlz =  α  + β1 ⋅  Fac_Elastl  + β2  ⋅  Fac_Salel  + β3 ⋅  Fac_Growl  + β4  ⋅  Fac_Carl  

                     + β5  ⋅  Fac_ETl  + β6  ⋅  Fac_GrMl  + β7  ⋅  Fac_RespMl  + β8  ⋅  Fac_lniBl  

                     + β9  ⋅  Fac_Compl  + β10  ⋅  Fac_Errl  + β11 ⋅  z + γ  ⋅  z ⋅Γ l⎡⎣ ⎤⎦  + edlz ,

          (7) 

where 

Dev_Π!"# : Deviation from optimal profit for scenario l and replication d in planning cycle z; 
Fac_Elast : Heterogeneity of elasticities across products (0: equal, 1: unequal); 
Fac_Sale  : Heterogeneity of sales level across products (0: equal, 1: unequal); 
Fac_Grow : Heterogeneity of growth parameters across products (0: equal, 1: unequal); 
Fac_Car : Heterogeneity of carryover coefficients across products (0: equal, 1: unequal); 
Fac_ET    :  Heterogeneity  of  elapsed  time  since  launch  across  products  (0:  equal,  1:    

unequal);  
Fac_GrM  : Type of growth model (0: asymmetric, 1: symmetric); 
Fac_RespM : Type of market response model (0: multiplicative, 1: mod. exponential); 
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Fac_IniB  : Initial budget allocation (0: equal allocation, 1:  proportional to sales); 
Fac_Comp : Competitive situation (0: No competition, 1: Nash competition); 
Fac_Err  : Estimation error in demand parameters (0: non-included, 1: included); 
Γ! : Vector of experimental factors in scenario l; 
α, β, γ  : (Unobserved) parameters; 
e : Error term; 
z = 1, 2, …, 10 (index for planning cycles or periods, respectively); 

l = 1, 2, …, 1024 (index for scenarios/experimental conditions); and 
d = 1, …, Dl (index for replications). 

 
All scenarios of our simulation experiment that do not include erroneous demand 

parameters are independent, i.e. e!"#~N(0,σ!), with error variance σ2. As a result, OLS 

estimation is efficient for the naïve allocation method and the percentage-of-sales rule. For the 

attractiveness heuristic and numerical optimization, we impose an error term on demand 

parameters that induces a correlation among regression errors (Kleijnen 1988). The errors for 

each replication across scenarios as well as across planning cycles within a scenario are 

correlated, while the errors across replications within a scenario are uncorrelated, i.e. 

e!"!~N(0,σ!"! ), with variance σ!"!  and Cov(elz,elz’)=σlz,lz’ for lz ≠ lz!. We account for these 

correlations by specifying a generalized variance-covariance matrix (Greene 2006). 

Results. Estimation results of Equation (7) are shown for each allocation method in 

Tables 5a and 5b. The first column by method includes estimated main effects whereas the 

second column includes estimated interaction effects with respect to time. We first note that the 

estimation results for main effects support our conclusions on the role of experimental factors 

that we draw from the preceding univariate analysis of mean differences (see table 4 again). We 

do not repeat them here but focus on the issue whether the impact of factors changes over time 

when the allocation method is repeatedly applied. 

The overall impact of time on the performance of a method is given by the main-effect 

coefficient with respect to time. We find positive, significant effects (p < .01) with respect to the 

Marketing Science Institute Working Paper Series 27



 
 

naïve allocation method and numerical optimization. This supports our earlier conclusions that 

the performance of these methods deteriorates with time. Consistent with our previous discussion 

of table 2 and 3, we find that the performance of the attractiveness rule improves over time. The 

associated coefficient is negative and significant (p < .01), which suggests that the deviation 

from optimal profit decreases over time irrespective of the influence of experimental factors. The 

coefficient is also negative for the percentage-of-sales rule, but not significant (p > .05).  

This picture does not change when we consider the interaction of a factor with time.3 The 

associated coefficient measures whether the influence of a factor on the deviation from optimal 

profit amplifies (same sign as the main effect) or diminishes (opposite sign of the main effect) 

over time. A non-significant coefficient signals that time has no impact on the relevance of a 

factor. For the naïve allocation, Table 5a reveals that time has no impact on the role of most 

factors and even amplifies the role of two factors. This adds to the overall negative impact of 

repeated application of the rule on its performance. In contrast, the importance for driving the 

performance of the percentage-of-sales rule diminishes over time for 5 out of 8 factors. In total, 

these findings seem to explain the slow but consistent convergence of the rule’s performance to 

the optimal profit as shown in table 2 and 3. Table 5b shows that the performance impact of all 

factors significantly decreases over time for the attractiveness rule. This result underlines the 

impressive convergence property of the rule (see table 2 and 3 again). Finally, we find that 4 out 

of 9 coefficients for time interactions are not significant or show the same sign as the main effect 

for numerical optimization. Together with the positive main effect of time this suggests that the 

performance of the method rather deteriorates than improves over time. 

 
                                                
3 Equation (7) assumes a linear convergence process. We also tested as a log-linear process, i.e. t was replaced by 

Log(t). Estimation results are very similar. 
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Conclusions and Future Research 

In this experimental simulation study, we investigate the performance of 4 methods to 

allocate a fixed marketing budget across products and marketing activities in order to maximize 

discounted portfolio profit over a five-period planning horizon. Consistent with the idea of a 

recurring planning process, allocation decisions are revised each period by repeatedly applying 

the respective decision rule. Our study reveals important insights into the performance 

characteristics of the methods that can be summarized as follows: 

1. Simple allocation rules such as an equal budget allocation and an allocation 
proportional to sales are, on average, rather far from being optimal. A contraction-
mapping rule such as the attractiveness heuristic is remarkable close to the 
optimum. 

2. If true demand parameters are not known but estimated with an error, numerical 
optimization no longer produces optimal results. In fact, its suboptimality is 
considerably higher than that of the attractiveness heuristic. 

3. Under extreme conditions, only the attractiveness heuristic appears to be reliable. 
Deviations from optimal profit may be quite large with the other methods. 

4. The attractiveness heuristic converges quickly to the optimal solution if repeatedly 
applied over time. The same is true for the percentage-of-sales rule, albeit at much 
slower speed. Numerical optimization (with noisy demand parameters) and naïve 
allocation deteriorate in their profit results over time. 

5. Across methods, heterogeneity in marketing responsiveness and product age appear 
to influence the performance of methods most. Deviation from optimal profit is 
higher the larger the heterogeneity across the portfolio is. 

We believe that these insights have important ramifications for both research and practice. 

The probably most surprising new result is that an exact method such as numerical optimization 

turns out to be inferior to a decision heuristic if it is applied under the realistic assumption that 

true demand parameters are not known. Given that we are not aware of a published optimization 

approach for the dynamic portfolio maximization problem under competition and uncertain 

demand parameters, we would not recommend managers to use existing models but rather adopt 
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a superior heuristic. Not every heuristic, however, is appropriate. Those that are theoretically 

derived such as the attractiveness heuristic demonstrate a remarkable reliable performance. 

Researchers might accept the challenge to develop an optimization approach for the 

addressed complex allocation problem that can handle uncertainty in demand parameters. It 

would tremendously add to the practicality of such solutions. They should also pay attention to 

derive an advanced heuristic from the newly stated optimization problem including uncertainty.  

Considering the influence of market, firm, and competitive conditions, we conclude that 

those factors that are associated with the effectiveness of marketing seem to have the greatest 

influence on optimal allocation results. Our analysis of the role of experimental factors revealed 

that the heterogeneity of marketing responsiveness and product age are most critical for the 

performance of an allocation method. Since we assume in our problem setting that marketing 

investments do impact the life cycle of a product, heterogeneity in product ages poses a 

challenge to the allocation decision. Young products, as an example, require enough resources to 

exploit their future sales promises. It is because of that growth potential that marketing managers 

need to trade-off investing in young but loss-making products compared to older, profitable 

products. It is a challenge for the allocation method to incorporate these dynamic effects. 

Our study is also subject to limitations. The simulation factors are limited to the factors 

that characterize our profit maximization problem setting. For other settings, other factors might 

be relevant. However, we believe that this setting is quite realistic as it considers various forms 

of dynamics, portfolio effects, several marketing activities, competition, and noisy demand 

parameter information. Our focus is on estimation error in demand parameters, but not on 

specification error, i.e. assuming a wrong demand model. Since only numerical optimization 

requires the explicit specification of a demand model but not the other methods, we believe that 
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the performance of that method is negatively affected. This raises even more concern about the 

practical application value of numerical methods. 

For future studies we recommend to analyze and compare the performance of new and 

old heuristic methods developed in marketing science by a dynamic comprehensive simulation 

framework, as developed in this study, which also impose an estimation error on demand 

parameters to simulate realistic scenarios. Hopefully our work will motivate such efforts.
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Table 1. Experimental variation of product characteristics 

  Product A Product B Product C Product D 

Sales elasticities      
Marketing activity 1 Homogenous .33 .32 .31 .30 
 Heterogeneous .50 .49 .12 .11 
Marketing activity 2 Homogenous .15 .15 .15 .15 
 Heterogeneous (.15) no variation 

Marketing carryover coefficient δ 1)     
 Homogenous .50 .50 .50 .50 
 Heterogeneous .60 .40 .40 .60 
(Initial) sales level      
 Homogenous 2.5m 2.5m 2.5m 2.5m 
 Heterogeneous 3.0m 4.0m 2.0m 1.0m 
Growth parameter (symmetric model)     

Parameter λ0 Homogenous 1.1 1.1 1.1 1.1 
 Heterogeneous .95 1.0 1.1 1.2 
Parameter η0 Homogenous -.05 -.05 -.05 -.05 

 Heterogeneous (-.05) no variation 
Growth parameter (asymmetric model)     

Parameter λ0 Homogenous 1.1 1.1 1.1 1.1 
 Heterogeneous .95 1.0 1.1 1.2 
Parameter η0 Homogenous -.10 -.10 -.10 -.10 
 Heterogeneous (-.10) no variation 

Product age (elapsed time in years)     
 Homogenous 3 3 3 3 
 Heterogeneous 1 2 3 4 
1) We do not model different carryover coefficients across marketing activities. 
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Table 2. Deviation from optimal profit means by rule and type of competition assuming no error in demand parameters 

  
Naïve allocation 

  
Percentage-of-sales rule 

  
Attractiveness heuristic 

 Numerical 
Optimization1) 

Monopoly Nash  Monopoly Nash  Monopoly Nash  Monopoly Nash 
Planning cycle           
1st .18501 .19378  .11252 .10620  .01950 .02008  - - 
2nd .19564 .20927  .11136 .10123  .01417 .01562  - - 
3rd .20134 .21414  .10762 .09442  .00937 .01048  - - 
4th .20523 .21723  .10423 .08886  .00610 .00688  - - 
5th .20837 .22057  .10175 .08486  .00409 .00456  - - 
6th .21120 .22351  .10009 .08212  .00291 .00318  - - 
7th .21398 .22653  .09906 .08028  .00227 .00225  - - 
8th .21670 .22969  .09847 .07906  .00194 .00197  - - 
9h .21949 .23306  .09817 .07828  .00181 .00174  - - 
10th .22255 .23674  .09809 .07781  .00180 .00165  - - 
            

Overall mean .20706 .22045  .10313 .08731  .00640 .00684  - - 
Overall median .21171 .21614  .09831 .09635  .00360 .00346  - - 
Overall Std. Dev. .10179 .09284  .05371 .04264  .00809 .00875  - - 
Overall Maximum .44381 .40020  .21910 .18682  .05113 .05727  - - 
Maximum for 10th 
planning cycle 

.44381 .40020  .19810 .13304  .01070 .01158  - - 

1) The deviation from maximum profit is per definition zero for the solution of the numerical optimization as it determines the optimal solution. 
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Table 3. Deviation from optimal profit means by rule and type of competition assuming error in demand parameters 

  
Naïve allocation 

  
Percentage-of-sales rule 

  
Attractiveness heuristic 

  
Numerical Optimization 

Monopoly Nash  Monopoly Nash  Monopoly Nash  Monopoly Nash 
Planning cycle           
1st .18501 .19378  .11252 .10620  .02116 .02960  .02612 .03118 
2nd .19564 .20927  .11136 .10123  .01561 .01887  .02744 .03085 
3rd .20134 .21414  .10762 .09442  .01094 .01308  .02785 .03086 
4th .20523 .21723  .10423 .08886  .00785 .00931  .02789 .03046 
5th .20837 .22057  .10175 .08486  .00596 .00707  .02870 .03069 
6th .21120 .22351  .10009 .08212  .00485 .00580  .02918 .03101 
7th .21398 .22653  .09906 .08028  .00421 .00513  .03041 .03138 
8th .21670 .22969  .09847 .07906  .00387 .00479  .03070 .03188 
9h .21949 .23306  .09817 .07828  .00371 .00467  .03169 .03263 
10th .22255 .23674  .09809 .07781  .00367 .00467  .03281 .03382 
            

Overall mean .20706 .22045  .10313 .08731  .00818 .01029  .02932 .03148 
Overall median .21171 .21614  .09831 .09635  .00634 .00627  .01582 .01363 
Overall Std. Dev. .10179 .09284  .05371 .04264  .00935 .00960  .04073 .03517 
Overall Maximum .44381 .40020  .21910 .18682  .06397 .07970  . 24645 .26181 
Maximum for 10th 
planning cycle 

.44381 .40020  .19810 .13304  .01257 .01756  .24645 .26181 
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Table 4. Deviation from optimal profit means by rule and experimental condition 
  

Factor 
 Naïve 

allocation 
 Percentage-

of-sales rule 
 Attractiveness 

heuristic 
 Numerical 

optimization 
Product  Sales elasticities         
characteristics    Homogenous  .15435**  .05164**  .00738**  .03193** 
    Heterogeneous  .27405**  .13881**  .00979**  .02887** 
 Sales level         
    Homogenous  .17485**  .09548ns  .00872*  .03388** 
    Heterogeneous  .25356**  .09496ns  .00845*  .02691** 
 Growth parameters         
    Homogenous  .20271**  .09336**  .00882**  .03254** 
    Heterogeneous  .22570**  .09709**  .00835**  .02826** 
 Carryover coefficient         
    Homogenous  .21356ns  .09503ns  .00634**  .02951** 
    Heterogeneous  .21485ns  .09541ns  .01083**  .03129** 
 Product age         
    Homogenous  .16163**  .08848**  .00753**  .04261** 
    Heterogeneous  .26678**  .10197**  .00964**  .18185** 

Growth model          
    Asymmetric  .21716**  .09572ns  .00916**  .03067ns 
    Symmetric  .21125**  .09473ns  .00800**  .03012ns 

Market response model         
    Multiplicative  .21764**  .08504**  .00869ns  .05039** 
    Modified exp.  .21076**  .10541**  .00848ns  .01041** 

Competitive situation         
    Monopoly  .20795**  .10314**  .00774**  .02932** 
    Nash competition  .22045**  .08731**  .00943**  .03148** 

Initial budget allocation         
    Equal distribution  -  -  .00913**  .02933** 
  Proportional to sales  -  -  .00804**  .03147** 

Error in demand parameters         
    Not included  -  -  .00662**  .00001) 

    Included  -  -  .00924**  .03040** 
 
Overall mean 

 
 

  
.21420 

  
.09522 

  
.00859 

  
.03040 

Notes: ** p<.01; * p<.05; ns = not significant (Difference between the two means, based on ANOVA F-test) 
1) No deviation from optimal profit by definition. 
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Table 5a. Experimental factors influencing the deviation from maximum profit: regression coefficients (standard errors) I 
   Naïve allocation  Percentage-of-sales rule 

  
   Main effects  Interaction with 

time 
 Main effects  Interaction with 

time 
    

Factor Level   Est. 
coeff. 

Est. std. 
dev. 

 Est. 
coeff. 

Est. std. 
dev. 

  Est. 
coeff. 

Est. std. 
dev. 

 Est. 
coeff. 

Est. std. 
dev. 

Constant    .041 (.005)**      .042 (.002)**    

Sales elasticities Homogenous    0   0    0   0 
 Heterogeneous   .118 (.003)**  3×10-4 (.001)   .096 (.001)**  -.002 (2×10-4)** 
Sales level Homogenous    0   0    0   0 
 Heterogeneous   .084 (.003)**  -.001 (.001)   -.005 (.001)**  .001 (2×10-4)** 
Growth parameters Homogenous    0   0    0   0 
 Heterogeneous   .010 (.003)**  .002 (.001)**   .005 (.001)**  -3×10-4 (2×10-4) 
Carryover coefficient Homogenous    0   0    0   0 
 Heterogeneous   .008 (.003)**  -.001 (.001)**   .003 (.001)**  -.001 (2×10-4)** 
Product age Homogenous    0   0    0   0 
 Heterogeneous   .081 (.003)**  .004 (.001)**   .032 (.001)**  -.003 (2×10-4)** 
Growth model Asymmetric    0   0    0   0 
 Symmetric   -.009 (.003)**  .001 (.001)   -.003 (.001)**  4×10-4 (2×10-4)* 
Market response model Multiplicative    0   0    0   0 

Modified exp.   4×10-4 (.003)  -.001 (.001)**   .012 (.001)**  .001 (2×10-4)** 
Competitive situation Monopoly    0   0    0   0 
 Nash competition   .011 (.003)**  3×10-4 (.001)   -.008 (.001)**  -.001 (2×10-4)** 
Initial budget allocation Equal distribution               
 Proportional to sales               
Error in demand 
parameters 

Not included               
               

Time (# planning cycle)    .002 (.001)**      -2×10-4 (3×10-4)    
 
(Pseudo) R² 
# of observations 

    
.868 

2,560 

       
.915 

2,560 

    

Notes: ** p< .01, * p< .05 
The factors initial budget allocation and estimation error are not included in our analysis of the naïve solution and the percentage-of-sales-rule because there is no 
variation for these factors. Numerical optimization is based in simulations with error in demand parameters only.  
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Table 5b. Experimental factors influencing the deviation from maximum profit: regression coefficients (standard errors) II 
   Attractiveness heuristic  Numerical Optimization  

  
   Main effects 

 
 Interaction with  

time 
 Main effects  Interaction with  

time 
    

Factor Level   Est. 
coeff. 

Est. std. 
dev. 

 Est. 
coeff. 

Est. std. 
dev. 

  Est. 
coeff. 

Est. std. 
dev. 

 Est. 
coeff. 

Est. std. 
dev. 

                
Constant    .001 (4×10-4)**      .004 (.002)**    

Sales elasticities Homogenous    0   0    0   0 
 Heterogeneous   .008 (2×10-4)**  -.001 (.4×10-4)**   -.004 (4×10-4)**  3×10-4 (.6×10-4)** 
Sales level Homogenous    0   0    0   0 
 Heterogeneous   -.001 (3×10-4)**  1×10-4 (.4×10-4)*   -.003 (.001)**  -1×10-4 (.8×10-4)* 
Growth parameters Homogenous    0   0    0   0 
 Heterogeneous   -.001 (2×10-4)**  1×10-4 (.4×10-4)*   -.003 (.001)**  -5×10-5 (.8×10-4) 
Carryover coefficient Homogenous    0   0    0   0 
 Heterogeneous   .009 (3×10-4)**  -.001 (.4×10-4)**   .003 (.001)**  -.001 (.7×10-4)** 
Product age Homogenous    0   0    0   0 
 Heterogeneous   .007 (2×10-4)**  -.001 (.3×10-4)**   .015 (.001)**  -.001 (.5×10-4)** 
Growth model Asymmetric    0   0    0   0 
 Symmetric   -.002 (2×10-4)**  3×10-4 (.3×10-4)**   -.001 (.001)  3×10-4 (.5×10-4)** 
Market response model Multiplicative    0   0    0   0 

Modified exp.   3×10-4 (2×10-4)  -1×10-4 (.3×10-4)**   -.031 (.001)**  6×10-5 (.5×10-4) 
Competitive situation Monopoly    0   0    0   0 
 Nash competition   .001 (2×10-4)**  -2×10-4 (.3×10-4)**   .005 (.002)**  9×10-5 (.8×10-4) 
Initial budget allocation Equal distribution    0   0    0   0 
 Proportional to sales   -.007 (2×10-4)**  .001 (.3×10-4)**   .005 (.001)**  -.001 (.5×10-4)** 
Error in demand 
parameters 

Not included    0   0        
Included   .003 (2×10-4)**  -1×10-4 (.2×10-4)**        

Time (# planning cycle) Planning cycle   -.001 (1×10-4)**      .001 (2×10-4)**    
                
 
(Pseudo) R² 
# of observations 

    
.820 

20,480 

       
.691 

15,360 

    

Notes: ** p< .01, * p< .05 
The factor estimation error is not included in our analysis of the numerical optimization method because there is no variation for this factor. 
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