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Functional Data Analysis: A New Approach for Predicting  
Market Penetration of New Products 

 

Abstract 
The Bass (1969) model has been a standard for analyzing and predicting the market 

penetration of new products. The authors demonstrate the insights to be gained and predictive 

performance of Functional Data Analysis (FDA), a new class of non-parametric techniques that 

has shown impressive results within the statistics community, on the market penetration of 760 

categories drawn from 21 products and 70 countries. The authors propose a new model called 

Functional Regression and compare its performance to over several models including the Classic 

Bass model, estimated means, last-observation projection, a meta-Bass model and an augmented 

meta-Bass model for predicting eight aspects of market penetration. Results a) validate the logic 

of FDA in integrating information across categories b) show that Augmented Functional 

Regression is superior to the above models and c) product specific effects are more important 

than country-specific effects when predicting penetration of an evolving new product.  

 

Keywords: Predicting Market Penetration; Global Diffusion; Bass Model; Functional 

Data Analysis; Functional Principal Components; Generalized Additive Models; Functional 

Clustering; Spline Regression; New Products 
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Introduction 
Firms are introducing new products at an increasingly rapid rate. At the same time, the 

globalization of markets has increased the speed at which new products diffuse across countries, 

mature, and die off (Chandrasekaran and Tellis 2008). These two forces have increased the 

importance of the accurate prediction of the market penetration of an evolving new product. 

While research on modeling sales of new products in marketing has been quite insightful 

(Chandrasekaran and Tellis 2007; Peres, Mueller and Mahajan 2008), it is limited in a few 

respects. First, most studies rely primarily, if not exclusively, on the Bass model. Second, prior 

research, especially those based on the Bass model, need data past the peak sales or penetration 

for stable estimates and meaningful predictions. Third, prior research has not indicated how the 

wealth of accumulated penetration histories across countries and categories can be best 

integrated for good prediction of penetration of an evolving new product. For example, a vital 

unanswered question is whether a new product’s penetration can be best predicted from past 

penetration of a) similar products in the same country, b) the same product in similar countries, 

c) the same product itself in the same country, or d) some combination of these three histories. 

The current study attempts to address these limitations. In particular, it makes four 

contributions to the literature. First, we illustrate the potential advantages of using Functional 

Data Analysis (FDA) techniques for the analysis of penetration curves (Ramsay and Silverman, 

2005). Second, we demonstrate how information about the historical evolution of new products 

in other categories and countries can be integrated to predict the evolution of penetration of a 

new product. Third, we compare the predictive performance of the Bass model versus an FDA 

approach, and some naïve models. Fourth, we indicate whether information about prior 
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countries, other categories, the target product itself, or a combination of all three is most 

important in predicting the penetration of an evolving new product.  

The model developed in this paper enables managers to solve the perennial problem in 

organizations of predicting penetration of new products in new markets. First, it provides 

managers a method to integrate information across similar products including competitors to 

achieve a superior prediction for an evolving new product. Second, the computationally efficient 

algorithms enable integration of information from a) past penetration of that category, b) past 

penetration of other categories, and c) knowledge of the product to which it belongs, to be used 

for prediction. The analysis can be implemented using standard statistical software  and new data 

can be easily added to the analysis by managers. Third, the Augmented Functional Regression 

approach provides distinctly superior predictions to those from more standard models.  

One important aspect of the current study is that it uses data about market penetration 

from most of 21 products across 70 countries, for a total of 760 categories (product x country 

combinations). The data include both developed and developing countries from Europe, Asia, 

Africa, Australasia, and North and South America. In scope, this study exceeds the sample used 

in prior studies (see Table 1). Yet the approach achieves our goals in a computationally efficient 

and substantively instructive manner.  

Another important aspect of the study is that it uses Functional Data Analysis to analyze 

these data. Over the last decade FDA has become a very important emerging field in statistics, 

although it is not well known in the marketing literature. FDA provides a set of techniques that 

can improve the prediction of future items of interest especially in cases where prior longitudinal 

data is available for the same products, data is available from histories of similar products, or 

complete data is not available for some years. The central paradigm of FDA is to treat each 
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function or curve as the unit of observation. We apply the FDA approach by treating the yearly 

cumulative penetration data of each category as 760 curves or functions. By taking this approach 

we can extend several standard statistical methods for use on the curves themselves. 

For instance, we use functional principal components analysis (PCA) to identify the 

patterns of shapes in the penetration curves. Doing so enables a meaningful understanding of the 

variations among the curves. An additional benefit of the principal component analysis is that it 

provides a parsimonious, finite dimensional representation for each curve.  In turn this allows us 

to perform functional regression by treating the functional principal component scores as the 

independent variables and future characteristics of the curves, such as future penetration or time 

to takeoff, as the dependent variable. We show that this approach to prediction is more accurate 

than the traditional approach of using information from only one curve. It also provides a deeper 

understanding of the evolutions of the penetration curves. 

Finally, we perform functional clustering by grouping the curves into clusters with 

similar patterns of evolution in penetration. The groups that we form show strong clustering 

among certain products and provide further insights into the patterns of evolution in penetration. 

In particular plotting the principal component scores allows us to visually assess the level of 

clustering among different products for all 760 curves simultaneously. Such a visual 

representation would be impossible using the original curves.  

The rest of the paper is organized as follows: The next three sections present the method, 

data and results. The last section discusses the limitations and implications of the research. 

Appendix A provides details of modeling of individual curves using splines. Appendix B 

provides details of k-means Clustering. Appendix C provides a glossary of technical terms used 

in the paper. 
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Method 
We present the method in five sections. The first three sections outline various 

applications of functional data analysis. Figure 1 provides a flowchart of the implementation of 

our three FDA techniques. The first section describes functional principal components. The 

second section shows how the functional principal component scores can be used to perform 

functional regression for predictions. The third section illustrates how the PCA scores can be 

used to perform functional cluster analysis and hence identify groupings among curves. The 

fourth section describes the alternate models against which we test the predictive performance of 

the FDA models. The last section details the method used for carrying out predictions. 

Functional Principal Components 
Functional data analysis is a collection of techniques in statistics for the analysis of 

curves or functions. Most FDA techniques assume that the curves have been observed at all time 

points but in practice this is rarely the case. In some instances, curves may not be observed over 

all time periods. In other cases, the curves may only be observed over discrete intervals (e.g. 

annual estimates of adoption of new products). Since we have many observations for each curve 

we first use a simple smoothing spline approach to generate a continuous smooth curve from our 

discrete, observations. For example, a smoothing spline can be fit to a curve plotting the 

penetration of CD Players, given 10 years of discrete data to obtain its penetration curve. The full 

details of our spline implementation are provided in Appendix A.  

We denote by X1(t), X2(t), …, Xn(t) the n smooth curves that are our approximations to 

the penetration curves for each product-country combination and decompose these curves in the 

form,  
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subject to the following orthogonality constraints  

kjdsssdss jj ≠=∫ ∫ for                )()(     and     1)( k
2 ϕϕϕ .  

The φj(t)’s represent the principal component functions, the eij's the principal component 

scores corresponding to the ith curve and µ(t) the average curve over the entire population. As 

with standard principal components, φ1(t) represents the direction of greatest variability in the 

curves about their mean. φ2(t) represents the direction with next greatest variability subject to an 

orthogonality constraint with φ1(t) etc. The eij's represent the amount that Xi(t) varies in the 

direction defined by φj(t). Hence a score of zero indicates that the shape of Xi(t) is not similar to 

φj(t) while a large score suggests that a high fraction of Xi(t)’s shape is generated from φj(t). 

To compute the functional principal components we divide the time period t=1 to t=T 

into p equally spaced points and evaluate Xi(t) at each of these time points. Note that the new 

time points are not restricted to be yearly observations because the smoothing spline estimate can 

be evaluated at any point in time. Finally, we perform standard PCA on this p dimensional data. 

The resulting principal component vectors provide accurate approximations to the φj(t)’s at each 

of the p grid points and likewise the principal component scores represent the eij’s. We opted to 

set p=T and to evaluate the φj(t)’s at the original yearly time points. Since our penetration curves 

were generally smooth this approach generated smooth estimates for the φj(t)’s. 

In theory, n different principal component curves are needed to perfectly represent all n 

Xi(t)’s. However, in practice a small number (D) of components usually explain a substantial 

proportion of the variability (Ramsay and Silverman, 2005) which indicates that  

nitetetettX DiDiii ,,1             )()()()()( 2211 KL =++++≈ ϕϕϕµ …(2)        

for some positive D << n.  
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Note that the smooth functions, Xi(t), are infinite dimensional in nature even though they 

are  observed at only a finite number of time points. However, we use the eij’s in Equation (2) to 

reduce the infinite dimensional functional data to a small set of dimensions. This reduction in 

dimensions is crucial because it allows us to perform functional clustering and functional 

regression as described in the following two sections. In addition, it provides a parsimonious 

representation because it reduces the number of observations for each curve from T down to 

some small value D. 

Note that even though the spline approach will not work in situations where only one or 

two time points are available for each curve, we can compute the functional principal 

components from sparsely observed data using other more sophisticated methods (see for 

example, James et al. 2000; Jank and Shmueli, 2006; Rettinger, Jank, Tutz, and Shmueli 2007). 

Hence the methods of functional clustering and functional regression that we describe in this 

paper can be applied even to products with only one or two years of penetration data. 

Functional Regression 
We use functional regression to predict several items of interest, such as future marginal 

penetration level in any given year or the year of takeoff. Let Xi (t) be the smooth spline 

representation of the ith curve observed over time such as the first five years of cumulative 

penetration for a given category. Let Yi represent a related item to be predicted, such as the 

marginal penetration in year six. 

Functional regression establishes a relationship between predictor, Xi(t), and the item to 

be predicted, Yi, as follows:  

n.1,...,i      ))(( =+= iii tXfY ε    … (3) 
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Equation (3) is difficult to work with directly because Xi(t) is infinite dimensional. 

However, for any function f there exists a corresponding function g such that 

,...),())(( 21 eegtXf =  where e1, e2,… are the principal component scores of X(t). We use this 

equivalence to perform functional regression with the functional principal component scores as 

the independent variables. This approach is related to principal components regression which is 

often used for non-functional, but high dimensional, data. The simplest choice for g would be a 

linear function in which case Equation (3) becomes  

∑
=
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for some D≥ 1. A somewhat more powerful model is produced by assuming that g is an 

additive but non-linear, function (Hastie and Tibshirani, 1990). In this case, Equation (3) 

becomes 

∑
=
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where the gj’s are non-linear functions that are estimated as part of the fitting procedure. 

There are different ways to model the gj’s but one common approach, which we use in this paper, 

is the smoothing spline discussed in Appendix A. One advantage of using Equations (4) or (5) to 

implement a functional regression is that once the eij's have been computed via the functional 

PCA, we can then use standard linear or additive regression to relate Yi to the principal 

component scores. We can also extend Equation (5) by adding covariates that contain 

information about the curves beyond the principal components, such as product or country 

characteristics or marketing variables. 
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Functional Clustering 
We use functional clustering for the purpose of better understanding the penetration 

patterns in the data. In particular, we wish to identify groups of similar curves and relate them to 

observed characteristics of these curves such as the product and country. We use the principal 

components described in the previous section to reduce the potentially large number of 

dimensions of variability and cluster all the curves in the sample.  

We apply the standard k-means clustering approach (MacQueen 1967) to the D-

dimensional principal component scores, ei, described in Equation (2) to cluster all the curves in 

the sample. Appendix B provides more details of k-means clustering.  

We use the “jump” approach (Sugar and James 2003) to select the optimal number of 

clusters, k. We compute ξk = γk
-Z- γ-Z

k-1 for a range of values of k where γk is given by (16) and Z 

is usually taken to be D/2. Sugar and James (2003) show through the use of information theory 

and simulations that setting the number of clusters equal to the value corresponding to the largest 

ξk provides an accurate estimate of the true number of clusters in the data. 

Once we compute the cluster centers, we assign each curve to its closest cluster mean 

curve. We can then use Equation (2) to project the centers back into the original curve space and 

examine the shape of a typical curve from each cluster. 

Comparing Alternative Models 
To fully understand the advantages of FDA, we compare two implementations or models 

of FDA with five non-Functional models. We name the two functional models Functional 

Regression and Augmented Functional Regression and the five non functional models - 

Estimated Mean, Last Observation Projection, Classic Bass, Meta Bass, and Augmented Meta 

Bass. Table 2 classifies all the models based on their use of information across curves and nature 

of the model.  
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The functional regression approach has three main strengths. First it is able to incorporate 

information from other products to improve prediction accuracy. Second, it implements a non-

parametric fitting procedure so it is not restricted by parametric assumptions. Third, it utilizes the 

functional nature of the penetration curves. We chose the five comparison models to gain an 

understanding of the gains from each of these strengths. For example, Classic Bass is parametric, 

does not use information from other products and is non-functional so it provides a baseline case 

where none of the strengths are present. The Meta Bass and Augmented Meta Bass models 

extend Classic Bass to incorporate information from other products but are still parametric and 

non-functional so they illustrate the improvement from borrowing strength across curves. The 

Last Observation Projection model uses information from all products and is also non-parametric 

so it illustrates the improvement from the first two strengths of FDA.  

Estimated Mean 
The Estimated Mean is a simple model, which fits the mean of the item to be predicted in 

the estimation sample, as the predicted value of the item in the holdout sample. So, for example, 

to predict marginal penetration in year T+1 we use the mean marginal penetration in year  T+1 

among all curves in the estimation sample. Specifically, the prediction for the ith observation in 

the holdout sample, iŶ , is given by 

YYi =ˆ        … (6) 

where Y is the mean across all countries and products on the estimation sample. Note that 

this is a very simple model which does not use any information from the first T periods of data.  

Last Observation Projection 
The Last Observation Projection is another simple model, which estimates the item to be 

predicted from only the last observation in each penetration curve. To do so, we first relate the 
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item to be predicted, Yi, to the final observed penetration level, Xi(T), in the estimation sample. 

To estimate this relationship, we explore both a standard linear model (Equation 7) as well as a 

more flexible non-linear model (Equation 8), 

iii TXY εββ ++= )(10 ,     … (7) 

 iii TXgY εβ ++= ))((0      … (8) 

We use the non-linear model for our final results. For the prediction, we use the estimated 

g from Equation (8) and the final observed penetration level (Xi(T)) in the holdout sample to get 

the predicted item in the holdout sample. 

Note, this is a slightly superior model to the Estimated Mean, because it uses at least the 

last observation from each curve to be predicted. However, it still does not use any other prior 

data from the curve. We also tested out a linear regression model incorporating all T time 

periods, Xi(1),…, Xi(T), as independent variables. We have not reported the results here because, 

while this approach worked slightly better on some items and slightly worse on others, the 

overall results were not substantively different from the Last Observation predictions. 

Classic Bass 
The Classic Bass Model (Bass 1969) fits each curve in the sample separately by 

estimating the following model: 

[ ] tqp
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where t=time period, s(t)=marginal penetration at time t, p=coefficient of innovation, 

q=coefficient of imitation and m=final cumulative penetration.  

We estimate the model via the genetic algorithm because Venkatesan et al (2004) provide 

convincing evidence that the genetic algorithm provides the best method for fitting the Bass 
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model relative to all prior estimation methods. For each curve, we use the first T years of data to 

estimate the three Bass parameters, m, p and q. We then predict the next five years of penetration 

levels by plugging the estimated parameters back into the Bass model and evaluating at times 

T+1 through T+5. We predict the time of peak marginal penetration by using t=log(q/p)/(p+q) 

and the peak marginal penetration using s= m(p+q)2/4q. We do not predict time to takeoff with 

the Classic Bass Model. Note that the Classic Bass Model does not distinguish between holdout 

and estimation samples because each curve is fit individually without using information from 

other curves. 

Meta-Bass 
In the Meta-Bass model, we extend the Classic Bass Model to use information across 

curves. To do so, we first estimate m, p and q for each curve using the genetic algorithm, as 

outlined above. Then, for each item to be predicted, we fit the non-linear additive model,  

iiiii qgpgmgY εβ ++++= )()()( 3210  ,    … (10) 

to the estimation sample where g1, g2, and g3 are smoothing splines as defined previously. 

We use the estimated parameters from this additive model and the estimates of m, p, and q for 

each curve in the holdout sample to compute the corresponding item to be predicted for each of 

the holdout curves. Note that the estimation of m, p, and q can also be done using a Bayesian 

formulation with a prior on {m,p,q}. 

Augmented Meta-Bass 
The Augmented Meta-Bass is the same non-linear additive model used for the Meta-Bass 

except that we add an indicator variable for each of the R products to which each curve belongs, 

thus:  
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where Iir =1 if the ith curve belongs to product r and 0 otherwise and the δr’s are 

regression coefficients that are estimated as part of the model fitting procedure. Note, that the 

Meta-Bass and Augmented Meta-Bass are extensions of the Classic Bass that make use of all of 

the information across curves, rather than just utilizing each curve individually. Since, using 

information across curves is an essential feature of functional regression, doing so puts the Meta 

Bass and the Augmented Bass on the same platform as the FDA models (see Table 2).  

Functional Regression 
For the Functional Regression model, we compute four principal component scores, the 

first two each on the penetration curves, Xi(t), and on the velocity curves, )(tX i′ . The principal 

component scores on the velocity curves are computed in an identical fashion to that for the 

penetration curves except that we utilize the derivative of Xi(t). We then use these four scores as 

the independent variables in an additive regression model, as shown in Equation (8), on the 

estimation sample. We then use the estimated parameters of this equation and the data from the 

curves in the holdout sample, to compute the items to be predicted in the holdout sample. 

Augmented Functional Regression  
Our second functional approach enhances the power of Functional Regression by adding an 

indicator variable for each of the R products to which each curve belongs, as with the 

Augmented Meta-Bass model. Hence, the Augmented Functional Regression model involves 

estimating a non-linear additive model on the estimation sample as follows     

i
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where the gj’s are smoothing splines. We then compute the items to be predicted for each 

curve in the holdout sample from the estimated values of the above parameters and the data in 

each curve in the holdout sample. This model is directly comparable to Augmented Meta Bass as 

both models use information across curves and from products. 

Method for Prediction 
We explain the specific procedure for carrying out the prediction in three parts: items 

being predicted, computation of errors, and partitioning of sample. 

Items Being Predicted 
We first truncate each curve at the Tth year. We use the penetration in years 1 to T to 

estimate the model and predict the marginal change in penetration for years T+1 to T+5. For 

each curve, we also predict the number of years to takeoff, the years to peak marginal 

penetration, and the level of peak marginal penetration. Takeoff is the first turning point in sales, 

marking the transition from the introductory to the growth stage of the product life cycle. We 

identify the year of takeoff based on the definition proposed by Golder and Tellis (1997). Thus, 

we predict a total of eight items for each of seven models, for a total of 56 model-items. We do 

this whole process once each for T=5 years and T=10 years. 

Computation of Errors 
For each of these 56 model-items to be predicted, we compute the mean absolute 

deviation (MAD) over all penetration curves, i.e.  

∑
=

−=
n

i
ii YY

n
MAD

1

ˆ1        … (13) 

where Yi is a particular item for curve i and iŶ   is the corresponding estimate using a 

given model. 
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Partitioning of Sample  
We use ten-fold cross-validation by randomly partitioning the curves into ten equal 

groups. We hold out one group, estimate each of the models on the remaining nine groups using 

data from years 1 to T and then form predictions on the held out group for years T+1 to T+5. We 

repeat this process ten times, for each of the ten held-out groups of data. T is the same for all 

countries and products. Figure 2 provides a graphical description of our process. For each of the 

56 model-items, we compute the mean absolute deviation as an average of these ten iterations. 

Note, that k-fold cross-validation is superior to simple splitting of data into one holdout and 

training group, because all of the data are used (randomly) as a holdout once.  

Data 
This section details our sample, sources, and procedure for data collection. 

Sample 
Most of the prior studies are limited in scope in terms of both product type and 

geographical breadth (see Table 1). We collect data on 760 categories drawn from 21 products 

(see Table 3) and 70 countries (see Figure 3). The sample includes a broad sample from three 

categories - household white goods, computers and communication, and entertainment and 

lifestyle.  

Sources 
The information required for this study is penetration rates of different products 

introduced in different markets from the year of introduction to at least some time after the 

takeoff. The primary source of our data is the Global Market Information Database of 

Euromonitor International. Euromonitor International’s Global Market Information Database is 

an integrated online information system that provides business intelligence on countries, 
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consumers and lifestyles. We also use press releases, industry reports and archived records to 

identify the year of introduction from databases like Factiva and Productscan.  

Procedure 
We follow the general rules for data collection for the historical method (Golder 2000). 

We explain specific problems we encounter and the rules we use to resolve them. We screen the 

categories to be used by three criteria. First, we suspect that all curves that have penetration rates 

above 1% in the first year, may have missing early years of data. So, for these categories, we 

check the year of introduction from historical reports or press releases. We exclude all categories 

where data is not available from the first year of introduction. Second, we exclude from our 

analysis any categories that do not contain at least T+5 years of observations or have not reached 

peak marginal penetration. Third, the data from this source is only available from 1977. Hence, 

we exclude all categories where the product had been introduced or taken off earlier than 1977.  

Results 
We present the results on functional principal components, functional regression, and 

functional clustering. 

Functional Principal Components 
Figures 4a and 4b provide plots of φ1(t) and φ2(t) computed from the first ten years of 

observations on the 760 penetration curves. The first principal component represents the amount 

by which a curve’s penetration, at year ten,  is above or below the global year ten average of all 

760 curves. Categories with a positive score on the first component end up with above average 

last period penetration levels while those with negative scores have below average last period 

penetration.  Alternatively, the second principal component represents the way that the 

penetration levels evolve. Categories with a positive score on the second component grow most 
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rapidly in the early years but slow down by year ten while those with a negative score are 

associated with slow initial growth and a rapid increase towards year ten. 

An alternative way of visualizing these curves is presented in Figures 4c and 4d. Here the 

black line corresponds to )(tµ , the average penetration level over all 760 curves. The red lines 

represent )()( tt jjϕηµ ± where ηj is a constant proportional to the standard deviation of eij. Figure 

4c shows that categories with a positive value for ei1 will have above average last period 

penetration levels at year ten while ones with a negative ei1 will remain stagnant over time and 

will have last period penetration levels below the overall average. Alternatively, Figure 4d shows 

that categories with a positive value for ei2 will grow somewhat faster than average to begin with 

but then fall below average after 10 years while curves with a negative ei2 will have the opposite 

pattern.   

Remarkably, φ1(t) and φ2(t) together explain over 99% of the variability in the smoothed 

penetration curves which indicates that ei1 and ei2 provide a highly accurate two-dimensional 

representation of Xi(t). However, it should be noted that the smoothing spline approach removes 

some of the variability in the data so φ1(t) and φ2(t) explain somewhat less than 99% of the 

variation in the observed penetration data. As mentioned previously one can also compute 

principal components for the velocity curves of the penetration levels. When we perform this 

decomposition on the penetration curves the principal components of X'
i(t) have a very similar 

structure to those for Xi(t).  

Functional Regression  
This section presents the performance of the seven models on the eight items to be 

predicted. Tables 4a and 4b present the cross-validated mean absolute deviation scores for each 

model using cutoffs of T=5 and T=10 years of training data respectively. We also compute the 
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fraction of curves for which Augmented Functional Regression outperforms each of the other 

methods (see Tables 5a and 5b). 

In order to assess the ability of functional data analysis to predict items of penetration 

curves, we compare the Functional Regression model to the five non-functional models. 

Functional Regression is superior to Estimation Mean, Last Observation Projection, and Classic 

Bass at predicting all eight items at both cutoff times (see Table 4). The reason is that the 

Estimation Mean and the Last Observation Projection use minimal information from prior time 

periods while Classic Bass uses no information across curves. Functional Regression is also 

better than Meta Bass on all items for both cutoff times except for time to peak marginal 

penetration at cutoff time T=10 years. 

The performance of Functional Regression is mixed when compared with Augmented 

Meta Bass. At the cutoff of T=5 years, Functional Regression is superior to Augmented Meta-

Bass for the T+1, T+2, and T+3 years, similar for T+4 years but inferior for the other four items 

(see Table 4a and Table 5a). At the cutoff of T=10 years, Functional Regression outperforms 

Augmented Meta-Bass for T+1 through T+5 years as well as time to takeoff but not for time to 

peak marginal penetration and peak marginal penetration (see Table 4b and Table 5b). The 

reason is that the Augmented Meta Bass uses information about product while the Functional 

Regression does not. 

On the other hand, with the sole exception of the Classical Bass predicting year T+1 with 

cutoff of T=10, the Augmented Functional Regression model is superior to all non functional 

models including Augmented Meta Bass, for every item to be predicted and for both cutoff 

times. The Augmented Functional Regression is also superior to Functional Regression, except 

in three instances where it is equal or slightly inferior (for T+1 years at cutoff of T=5 years and 
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T+1, T+4 years at cutoff of T=10 years). The superiority over Functional Regression is most 

noticeable in the time to takeoff and time to peak marginal penetration. 

When considering Table 5, Augmented Functional Regression is superior for at least 50% 

of the curves in 94 out of the 96 possible comparisons with other models. It appears that the 

Functional Regression model is slightly superior for predicting T+1 but the augmented version is 

preferable for any longer range predictions. Most of the differences in Tables 4 and 5 are highly 

statistically significant. We also tested out the Augmented Functional Regression model with the 

addition of a predictor for geographic region as defined in the clustering section but found that 

the performance deteriorated slightly. In summary, the Augmented Functional Regression model 

outperforms other models in over 96 % of the comparisons with six alternate models to predict 

seven items across two cutoff times.  

Functional Clustering 
Figure 5 provides several approaches to viewing the results from the functional clustering 

using k-means on ei1 and ei2. The “jump” approach of Sugar and James (2003) suggests between 

six and nine clusters. We opt for six to provide the most parsimonious representation (see Table 

6). Figure 5a plots the centers of the six clusters on the original time domain. The figure 

illustrates the pattern of growth of a typical curve in each cluster. Alternatively, Figure 5b plots 

all 760 curves in the reduced two dimensional space, using the same colors to represent each 

cluster as for Figure 5a. The six cluster centers are represented as solid black circles.  

Each cluster differs from the other clusters in the pattern of penetration over time. 

Broadly speaking, Clusters 1 through 3 represent high growth products while the last three 

correspond to lower growth rates. Cluster 1 takes on large values in both the first and second 

principal component dimensions. Recall that a positive value in the first dimension corresponds 
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to overall high last period penetration while a positive value in the second dimension represents a 

fast growth at the beginning but a slow down by year ten. The black curve in Figure 5a shows 

this pattern with the fastest overall growth but a slight slowdown by year ten. Cluster 2 is close 

to zero for the second dimension indicating no overall slowdown as we can see from the pink 

curve. Clusters 3 and 4 provide an interesting contrast. Cluster 3 has a negative value in the 

second dimension while Cluster 4 is positive. This suggests a slow start for Cluster 3 but with 

increasing momentum by year ten and the opposite pattern for Cluster 4. Figure 5a shows 

precisely this pattern with Cluster 4 starting ahead of Cluster 3 but then falling rapidly behind. 

Cluster 5 represents a moderate rate of growth while Cluster 6, which contains the largest 

number of products, corresponds to a much slower improvement in penetration.  

We also examine whether the penetration patterns differ across products. Figure 5c 

illustrates the growth patterns for the twenty-one different products in the sample. We plot all 

760 curves in our two-dimensional space using a different plotting symbol for each product. 

There are very clear patterns within the same product. For example, the green stars correspond to 

internet-compatible personal computers and have almost uniformly large values on the first 

dimension indicating rapid increases in penetration levels. Notice that one product may have 

both positive and negative values for the second dimension, suggesting more rapid takeoff in 

some markets over others. Alternatively, the yellow squares represent DVD players and have a 

very tight clustering with almost uniformly moderate scores on the first principal component and 

negative scores on the second principal component. These results suggest a slow initial growth 

with much more rapid expansion towards year ten. The tighter clustering suggests that the 

takeoff for these products is largely similar across different markets in the sample. Finally, the 

blue solid dots, representing Video Tape Recorders, show the opposite pattern with large positive 
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scores on the second dimension suggesting fast initial growth but then a slow down in later 

years.  

Curves for each product are from a variety of countries. Table 6 provides the fraction of 

curves of each product that fall within each of the six clusters. The functional clustering suggests 

three groups - fast growth electronics, slower growth electronics, and household goods. The first 

three clusters capture a group of six fast growth electronics products with Cluster 1 primarily 

internet personal computers, Cluster 2 a mixture and Cluster 3 mainly DVD players. The other 

three clusters capture a group of slow growth products: Video game consoles, satellite TV, and 

CD players make up the bulk of Cluster 4. Cluster 5 contains many products but seems to 

principally concentrate on countries with slower growth for CD and DVD players, Satellite TV, 

and Video game consoles. Finally, Cluster 6, the slowest growth cluster, contains the vast bulk of 

household appliances.  

Similarly, we also examine whether the penetration patterns differ across countries. We 

categorize the data into seven economic groupings (see Table 7 and Figure 3). For each group, 

Table 7 shows the fraction of curves that fall in each of the six clusters. For example, for 

countries from Africa and developing Asia 86% of curves fall into the slowest growth Cluster 6. 

In contrast, North American, Western Europe and Australasia have curves that are more spread 

out over the six clusters, with only 30% in the slowest growth Cluster 6. 

Discussion 
Predicting the market penetration of new products is currently growing in importance due 

to increasing globalization, rapid introduction of new products, and rapid obsolescence of newly 

introduced products. Moreover, good record keeping has generated a wealth of new product 

penetration histories. The Bass model has been the standard model for analyzing such histories. 
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However, the literature has not shown how exactly researchers should integrate the rich record of 

penetration histories across categories with the penetration of an evolving new product to predict 

future characteristics of its penetration. Functional data analysis, which has gained significant 

importance in statistics, is well suited for this task. Our goal is to demonstrate and assess the 

merit of functional data analysis for predicting the market penetration of new products and 

compare it with the Bass model. 

We compare the predictive performance of Functional Regression and Augmented 

Functional Regression with five other models: two simple or naïve models, the Classic Bass 

model, the Meta Bass model and the Augmented Meta-Bass Model on eight items to be 

predicted.  

Our analysis leads to three important results 

1. The essential logic of integrating information across categories, which is the foundation of 

functional data analysis, provides superior prediction for an evolving new product. 

2. Specifically, an evolving category can be best predicted by integrating information from a) 

past penetration of that category, b) past penetration of other categories, and c) knowledge of 

the product to which it belongs, via the framework of functional regression. 

3. For a vast variety of items that need to be predicted, the Augmented Functional Regression is 

distinctly superior to a variety of models, including simple or naïve models classic and 

enhanced Bass models and Functional Regression. 

Implications 
Our functional regression has at least two clear managerial implications. First, our 

method can be used to make more accurate predictions of the future trajectory for both existing 

products as well as new products with only a few years of observations. One could also make 
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predictions for the evolution of a new product without any data based on the previously observed 

principal component scores of similar products. Second, although we have not done so here, it 

would be conceptually simple to add additional variables such as pricing and advertising 

information to the functional regression model. The addition of these variables would not only 

allow a manager to passively predict but to also control future penetration levels. 

Our results raise the following questions with further managerial and research implications. 

First, why don’t simple extrapolative models work well for prediction, as some 

researchers assert they do (Fader and Hardie 2005; Armstrong 1984; 1978; Armstrong and Lusk 

1983). Our analysis makes it clear that there are two dimensions of information that are not 

captured by simple models. One, there is valuable information in the prior history of the new 

product, which as the Bass model suggests, probably arises from consumers’ innovative and 

imitative tendencies. Two, there is intrinsic information across products and countries, which 

may be used effectively to predict the penetration of an evolving new product. Despite their 

intuitive appeal, simple models that do not capture these sources of information will fail to 

predict well. 

Second, why does the Classic Bass model not work as well for prediction? We suspect 

that it does not fully capture the two dimensions of information. One, the classic Bass model 

ignores other categories. This fact is borne out by the superiority of the Meta Bass and the 

Augmented Meta Bass in predicting items further out into the future. Both of these latter models 

capture information from other categories. Thus, even in a parametric setting, increased 

predictive accuracy can be gained by incorporating information from multiple categories, 

especially when predicting further into the future.  Two, the classic Bass model is relatively 

flexible but nevertheless parametric. So it is limited in the range of shapes that it can take on. In 
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particular, it is constrained to symmetric shapes for certain values of p and q. The relatively 

strong performance of the Last Observation Projection model shows that removing the 

parametric assumptions can cause additional improvements.  In line with that result, FDA 

provides higher flexibility by using a non-parametric approach. So it can capture a variety of 

flexible patterns without over fitting, with the help of the principal components as explained 

earlier. The main disadvantage of a non-parametric method is that the increased flexibility can 

produce variability in the estimates. However, functional regression builds strength across the 

760 curves to mitigate the problem of variability while generating more flexible estimates than 

those produced by the Classic Bass model. 

Third, why does the Augmented Functional Regression outperform Functional 

Regression, especially for items further out into the future? The probable reason is that a 

particular product has a distinct pattern of penetration over time. Adding knowledge of that 

product further stabilizes the variability of predictions around their true value. This pattern can 

be seen in both the improvement of Augmented Meta-Bass over Meta-Bass and Augmented 

Functional Regression over Functional Regression. Note also, that the improvement is greatest in 

peak marginal penetration, an item which arguably is most closely associated with a product. 

Fourth, why is product seemingly more relevant for predicting market penetration than is 

country? The probable reason is that the evolution of market penetration seems to follow more 

distinct patterns by the nature of the product than by the country. For example, electronic 

products with universal appeal diffuse rapidly across countries both large and small and 

developed and developing. On the other hand, culturally sensitive products such as food 

appliances diffuse slowly overall and very differently across countries. Moreover, our data is 
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only after 1977. Due to increasing industrialization of developing countries and flattening of the 

world economy, inter-country differences are much smaller after 1977, than before it. 

Fifth, is the exclusion of marketing variables a limitation of Functional Regression? We 

posit that it is not. Indeed, we show the superiority of Augmented Functional Regression, which 

includes a covariate for the product to which the curve belongs. In like manner, this model could 

also include covariates for marketing variables, such as price, quality, or advertising. 

To illustrate some of the above points, Figure 6 demonstrates six plots of the predictive 

performance of the Classic Bass model (red) and the Functional Regression model (green) 

relative to actual (black). These six plots are drawn from among those where Functional 

Regression does the best. For each plot, the first ten periods are fitted on the estimation sample, 

while the last five periods are predictions on the hold out sample. Both models do well in the 

estimation periods. However, performance varies dramatically in the hold out periods. 

Note how for curves, 676, 557, and 126, a generally flat curve with a late takeoff in the 

last two periods, tricks the classic Bass into over predicting penetration for the holdout period. 

However, Functional Regression, which draws strength from other categories, is not so 

influenced by the last two periods. Also, note how for curves 582, 572, and 121, the 

parameterization of the Bass model leads it to predict symmetric curves which are quite far from 

the actual.  

This study has the following limitations. First, while the data is from a single source, the 

source itself does not record data before 1977. Indeed, we drop categories in some countries 

where we consider the year of introduction precedes 1977. We also drop categories in countries 

where penetration is not high enough till 2006. So the data are not balanced by country. Thus, 

substantive estimates about time to takeoff or about penetration by countries must be made with 
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caution. However, that fact should not affect the comparison of the models, because all models 

have access to the same data. Second, depending on the release patterns of a particular product 

the product predictor used in Augmented Meta-Bass and Augmented Functional Regression may 

or may not be available. Third, our data do not include any marketing variables. However, the 

strength of the Augmented Functional Regression is that it can include such marketing variables. 

Fourth, our approach applies to the prediction of market penetration using only aggregate 

historical data. Other approaches exist to predict based on survey and experimental data (Hauser, 

Tellis and Griffin 2006) and disaggregate historical data (Tellis and Franses 2006). Future 

research could address how better improvements can be obtained by using such information 

when available. Fifth, future research could also address the of functional regression for 

predicting the evolution of underlying technologies (e.g., Sood and Tellis 2005). 
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Appendix A 

Modeling of Individual Curves 
Suppose that a curve, X(t), has been measured at times t=1, 2,…,T. Then the smoothing 

spline estimate is defined as the function, h(t), that minimizes  
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for a given value of λ>0 (Hastie et al., 2001). The first squared error term in Equation 

(14) forces h(t) to provide a close fit to the observed data while the second integrated second 

derivative term penalizes curvature in h(t). The tuning parameter λ determines the relative 

importance of the two components in the fitting procedure. Large values of λ force a h(t) to be 

chosen such that the second derivative is close to zero. Hence as λ gets larger h(t) becomes closer 

to a straight line, which minimizes the second derivative at zero. Smaller values of λ place more 

emphasis on h(t)’s that minimize the squared error term and hence produce more flexible 

estimates. We follow the standard practice of choosing λ as the value that provides the smallest 

cross-validated residual sum of squared errors (Hastie et al., 2001). Remarkably, even though 

Equation (14) is minimized over all smooth functions it has been shown that its solution is 

uniquely given by a finite dimensional natural cubic spline (Green and Silverman, 1994), which 

allows the smoothing spline to be easily computed. A cubic spline is formed by dividing the time 

period into L regions where larger values of L generate a more flexible spline. Within the lth 

region a cubic polynomial of the form  

  )( 32 tdtctbath llll +++=                                                        (15) 

is fit to the data. Different coefficients, al, bl, cl and dl are used for each region subject to 

the constraints that h(t) must be continuous at the boundary points of the regions and also have 
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continuous first and second derivatives. In a natural cubic spline, the second derivative of each 

polynomial is also set to zero at the endpoints of the time period. In the more complicated 

situation where the curves are sparsely observed over time (e.g. due to a different data generating 

process or data limitations), a number of alternatives have been proposed. For example, James et 

al (2000) suggest a random effects approach when computing sparsely observed curves.  
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Appendix B 

K-means Clustering 
k-means clustering works by locating D-dimensional cluster centers c1,…, ck which 

minimize the sum of squared distances between each observation and its closest cluster center 

i.e. find c1,…, ck to minimize 
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We use an iterative algorithm to minimize γ. First we choose an initial set of candidate 

centers, c1,…, ck, by randomly selecting k of the ei’s and assign each curve to its closest center. 

Then, for each cluster, we define a new center by taking the average over all curves currently 

assigned to that cluster. We continue this algorithm until additional iterations do not yield 

significant changes in the cluster centers.  
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Appendix C  

Glossary 
Augmented Meta Bass: The Augmented Meta-Bass Model extends the Meta Bass Model (see 

below) with the inclusion of an additional indicator for the product to which each curve 
belongs.  

 
Augmented Functional Regression: Augmented Functional Regression extends Functional 

Regression (see below) with the inclusion of an additional indicator for the product to 
which each curve belongs. (see also Functional Regression) 

 
Category: A category is a product-country combination, such as dishwasher in Spain. 
. 
 
Classic Bass Model: Is the original Bass model (Bass 1969), which models the current sales of a 

new product as a function of prior sales and cumulative sales. The model derives from the 
assumption that a consumer’s adoption of a new product is a function of some adoption 
rate plus the number of prior adopters. We fit the model using a Genetic Algorithm. 

 
Estimated Mean: The Estimated Mean model uses the mean of the item in the estimation 

sample, as the value of the item to be predicted in the holdout sample. 
   
Functional Clustering: Functional clustering is a method of grouping functions with similar 

characteristics e.g. to find products with similar penetration histories. 
 
Functional Data Analysis: Functional data analysis is a collection of statistical techniques for 

the analysis of curves or functions. 
 
Functional Principal Components: Functional Principal Components is a statistical technique 

to identify the main ways that a group of curves tends to differ from the overall mean 
function. One application is to reduce infinite dimensional functions to a finite number of 
dimensions. 

 
Functional Regression: Functional Regression is a model used to establish the relationship 

between a dependent variable and an independent variable. The key difference between a 
functional and a standard regression model is that in the latter case the independent 
variable is a function e.g. a smooth representation of a curve observed over time. 

 
Historical Method: The historical method is a scientific method where researchers gather data 

from two or more published sources that meet criteria of reliability, independence, 
objectivity, corroboration, and contemporaneity. 

 
k-means Clustering: k-means clustering is a method of partitioning data into different sets such 

that each point is assigned to the cluster whose center is nearest.  
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Last Observation Projection: The Last Observation Projection model estimates the item to be 
predicted from only the last observation in each penetration curve. 

 
Market Penetration: Market Penetration is defined as the percentage of households in a 

geographical area that have adopted (purchased) a certain product. 
 
Meta Bass: The Meta-Bass model is a regression model that relates estimates of m, p, and q to 

the item to be predicted for a set of curves. 
 
Product: A good that meets a distinct consumer need (e.g. dishwasher) 
 
Smoothing Spline: Smoothing spline is a curve that provides a smooth approximation to a set of 

points observed on an (X,Y) axis.  
 
Takeoff: Takeoff is the first turning point in sales, marking the transition from the introductory 

to the growth stage of the product life cycle.  
 
Cross-validation: Cross-validation involves partitioning a sample of data into subsets. A model 

is then fit using the data from all but one of the subsets and its accuracy is assessed on the 
remaining data set. This fitting and accuracy assessment procedure is then repeated for 
each subset. The overall accuracy of the model is estimated by averaging the results for 
each subset.  
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Table 1: 

Scope of Prior Studies* 

Authors Categories Countries 

Gatignon, Eliashberg and Robertson (1989) 6 consumer durables 14 European countries 

Mahajan, Muller and Bass (1990) Numerous studies  

Sultan, Farley and Lehmann (1990) 213 applications US, European 
countries 

Helsen, Jedidi and DeSarbo (1993) 3 consumer durables 11 European countries 
and US 

Ganesh and Kumar (1996) 1 industrial product 10 European countries, 
US, Japan 

Ganesh, Kumar, Subramaniam (1997) 4 consumer durables 16 European countries 

Golder and Tellis (1997) 31 consumer durables USA 

Putsis et al (1997) 4 consumer durables 10 European countries 

Dekimpe, Parker and Sarvary (1998) 1 service 74 countries 

Kumar, Ganesh and Echambadi (1998) 5 consumer durables 14 European countries 

Golder and Tellis (1998) 10 consumer durables USA 

Kohli, Lehmann and Pae (1999) 32 appliances, house 
wares and electronics USA 

Dekimpe, Parker and Sarvary (2000) 1 innovation More than 160 
countries 

Mahajan, Muller and Wind (2000) Numerous studies  

Van den Bulte (2000) 31 consumer durables USA 

Talukdar, Sudhir, Ainslie (2002) 6 consumer durables 31 countries 

Agarwal and Bayus (2002) 30 innovations USA 

Goldenberg, Libai and Muller (2002) 32 innovations USA 

Tellis, Stremersch and Yin (2003) 10 consumer durables 16 European countries 

Golder and Tellis (2004) 30 consumer durables USA 

Stremersch and Tellis (2004) 10 consumer durables 16 European countries 

Van den Bulte and Stremersch (2004) 293 applications 28 countries 

Chandrasekaran and Tellis (2007) 16 products and services 40 countries 
* Adapted from Chandrasekaran and Tellis (2008) 
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Table 2:  

Classification of Models 
 

Analysis of  Curves 
 

Non Functional Analysis Functional Analysis 

No Classical Bass  

Uses 
Information 
Across Curves 

Yes 

Estimation Mean 
Last Observation Projection 

Meta-Bass 
Augmented Meta-Bass 

Functional Regression 
Augmented Functional 

Regression  
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Table 3: Sample Categories 

 
Entertainment and 

Lifestyle 
Household White 

Goods 
Computers/ 

Communication 
Cable TV Air conditioner Internet PC 
Camera Dishwasher Personal Computer 

CD Player Freezer Fax 
Color TV Microwave Owen Satellite TV 

DVD Player Tumble Drier Telephone 
Hi-Fi Stereo Vacuum Cleaner 

Video Camera Washing Machine 
Video Tape Recorder 
Videogame Console 
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Table 4: 

Mean Absolute Deviation by Model and Item 

Table 4a: Using five years (T=5) of training data 

Method 
Item to be 
Predicted Estimation 

Mean 

Last 
Observation
Projection 

Classical 
Bass 

Meta-
Bass

Augmented 
Meta-Bass

Functional 
Regression 

Augmented
Functional 
Regression

T +1 9.08 4.05 3.01 7.47 7.52 2.43 2.48 

T +2 12.39 7.49 7.18 10.50 10.01 5.46 5.12 

T +3 14.49 10.01 12.40 12.74 11.20 8.14 6.87 

T +4 17.35 13.74 17.27 16.08 12.16 11.75 8.29 

T +5 19.57 17.28 19.52 19.52 13.99 15.82 9.85 

Takeoff 3.36 2.84 NA 2.69 2.41 2.66 2.35 

Peak Time 5.82 5.09 9.55 4.65 3.36 4.62 3.18 
Peak Marginal 
Penetration 33.88 31.95 140.07 34.40 24.49 29.38 20.70 

Table 4b: Using ten years (T=10) of training data 
Method 

Item to be  
Predicted Estimation 

Mean 

Last 
Observation
Projection 

Classical 
Bass 

Meta-
Bass

Augmented 
Meta-Bass

Functional 
Regression 

Augmented
Functional 
Regression

T+1 10.83 5.37 4.02 8.17 8.17 4.17 4.70 

T +2 11.19 6.59 6.38 8.69 8.73 5.48 5.69 

T +3 11.56 7.25 8.43 10.90 10.83 6.31 6.11 

T +4 11.58 8.44 11.02 9.40 9.26 8.08 7.81 

T +5 11.65 9.72 11.96 11.48 11.11 9.07 8.40 

Takeoff 3.61 2.93 NA 2.95 2.86 2.69 2.51 

Peak Time 4.69 3.95 7.54 3.50 2.94 3.66 2.92 
Peak Marginal 
Penetration 26.66 23.65 42.71 25.99 22.32 23.18 18.18 

Note: All results, except those for Takeoff and Peak Time, have been multiplied by 103. 
          Using an alternative metric for error, the Mean Squared Error, yields similar results 
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Table 5:  

Superiority of Augmented Functional Regression Over Other Models 

Table 5a: Fraction of curves for which Augmented Functional Regression outperforms other models 
using five years of training data 

Method 
Item to be 
Predicted Estimation 

Mean 

Last 
Observation 
Projection 

Classical 
Bass 

Meta 
Bass 

Augmented 
Meta-Bass 

Functional 
Regression 

T+1 0.89 0.68 0.50 0.83 0.84 0.52 

T+2 0.79 0.70 0.50 0.77 0.76 0.58 

T+3 0.77 0.72 0.53 0.72 0.73 0.68 

T+4 0.77 0.77 0.61 0.74 0.70 0.74 

T+5 0.79 0.80 0.64 0.75 0.74 0.78 

Takeoff 0.63 0.63 NA 0.58 0.53 0.60 

Peak Time 0.76 0.69 0.76 0.66 0.53 0.67 
Peak Marginal  
Penetration 0.70 0.69 0.66 0.72 0.59 0.69 

Table 5b: Fraction of curves for which Augmented Functional Regression outperforms other models 
using ten years of training data 

Method 
Item to be  
Predicted Estimation 

Mean 

Last 
Observation 
Projection 

Classical 
Bass 

Meta-
Bass 

Augmented 
Meta-Bass 

Functional 
Regression 

T+1 0.87 0.51 0.33 0.72 0.74 0.36 

T+2 0.81 0.62 0.50 0.72 0.75 0.50 

T+3 0.79 0.63 0.56 0.70 0.70 0.57 

T+4 0.75 0.61 0.64 0.62 0.62 0.59 

T+5 0.67 0.61 0.62 0.62 0.62 0.60 

Takeoff 0.67 0.60 NA 0.58 0.57 0.52 

Peak Time 0.69 0.61 0.77 0.53 0.49 0.56 
Peak Marginal  
Penetration 0.72 0.67 0.63 0.66 0.60 0.68 
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Table 6:  

Proportions of Each Type of Product within Each Cluster 
 

Clusters 
Product-Type 

1 2 3 4 5 6 

Cable TV 16.7% 16.7% 10.5% 7.7% 8.9% 4.2% 

CD Player 8.3% 16.7% 18.4% 15.4% 10.3% 2.0% 

DVD Player 8.3% 16.7% 44.7% 5.1% 20.5% 2.7% 

Internet PC 58.3% 36.1% 10.5% 7.7% 8.2% 5.6% 

Satellite TV 0% 2.8% 10.5% 16.7% 15.1% 5.3% 

Videotape Recorder 8.3% 11.1% 5.3% 7.7% 2.1% 0% 

Camera 0% 0% 0% 0% 0.7% 1.8% 

Color TV 0% 0% 0% 2.6% 0.7% 2.4% 

Fax 0% 0% 0% 3.8% 2.1% 0% 

HiFi Stereo 0% 0% 0% 2.6% 1.4% 7.6% 

PC 0% 0% 0% 2.6% 4.8% 8.9% 

Telephone 0% 0% 0% 0% 1.4% 2.7% 

Video camera 0% 0% 0% 2.6% 4.8% 1.8% 

Videogame consol 0% 0% 0% 19.2% 11.0% 2.2% 

Air-conditioner 0% 0% 0% 0% 0.7% 12.9%

Freezer 0% 0% 0% 0% 0% 7.1% 

Microwave oven 0% 0% 0% 3.8% 4.1% 11.1%

Tumble Drier 0% 0% 0% 1.3% 1.4% 3.6% 

Vacuum cleaner 0% 0% 0% 0% 0% 5.1% 

Washing Machine 0% 0% 0% 1.3% 0.7% 2.0% 
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Table 7: 

Distribution of Each Economic Grouping over Clusters 

Clusters 
Economic Groupings 

1 2 3 4 5 6 

N. America, W. Europe and 
Australasia  5.1% 10.8% 13.6% 15.9% 23.3% 31.2% 

Eastern Europe  0% 3.4% 3.4% 8.0% 24.7% 60.3% 

East Asia  5.1% 8.5% 3.4% 20.3% 13.6% 49.2% 

West Asia  0% 6.7% 11.1% 13.3% 22.2% 46.7% 

South America  0% 0% 0.9% 10% 23.6% 65.5% 

Africa 0% 0% 0% 3.1% 10.9% 85.9% 

Developing Asia 0% 2.3% 0% 3.8% 8.3% 85.6% 
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 Figure 1: 

Flowchart of the Implementation of the three FDA Techniques 
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Figure 2: 

Analytic Framework demonstrating 10-fold cross validation 
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Figure 3: 

Distribution and Classification of Countries 

 
Legend 
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Figure 4:  

Illustration of First Two Functional Principal Component Curves 
(Based On Ten Years Of Training Data) 
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Figure 5:  

Illustration of Functional Clustering  

 

Figure 5 a) The shapes of the average penetration curves within each of the six clusters. 

b) The first two principal component scores for all 760 curves. A different color and plotting 

symbol has been used for each cluster with a black solid circle for the cluster centers. c) Same as 

b) but with different symbols for each product. 
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Figure 6 

Comparison of Predictive Accuracy of Classic Bass Model and Functional Regression Model  
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