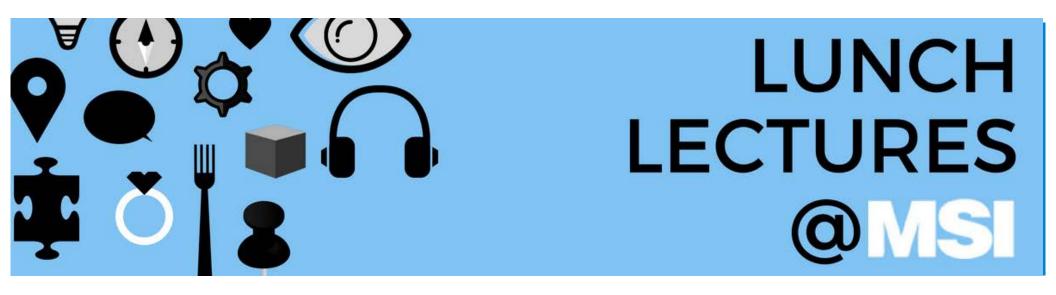
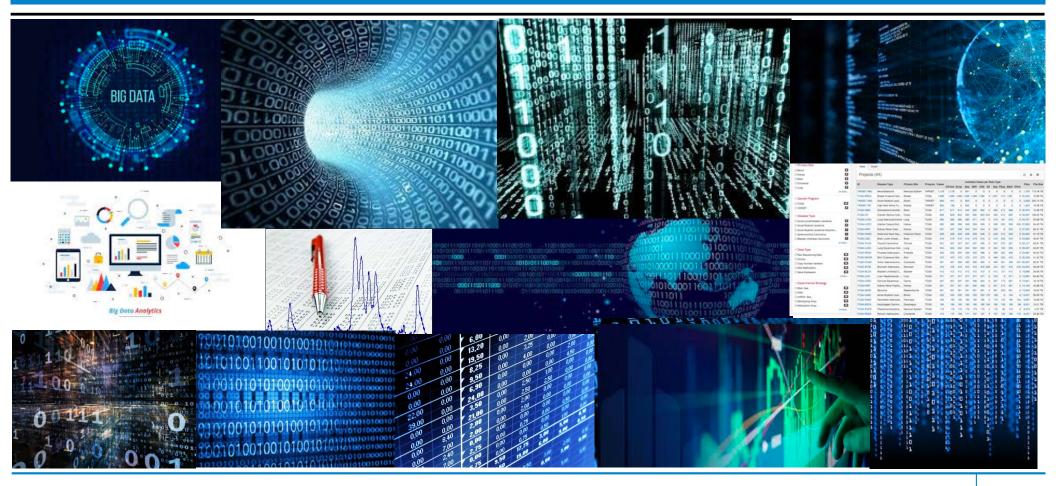


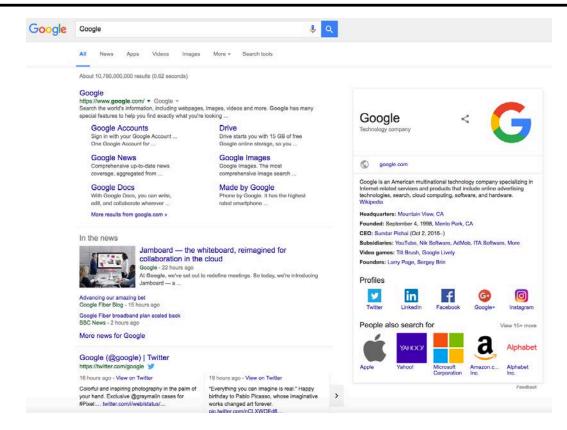
Using Text for Business Insight

Oded Netzer
Columbia Business School



The Image of Data

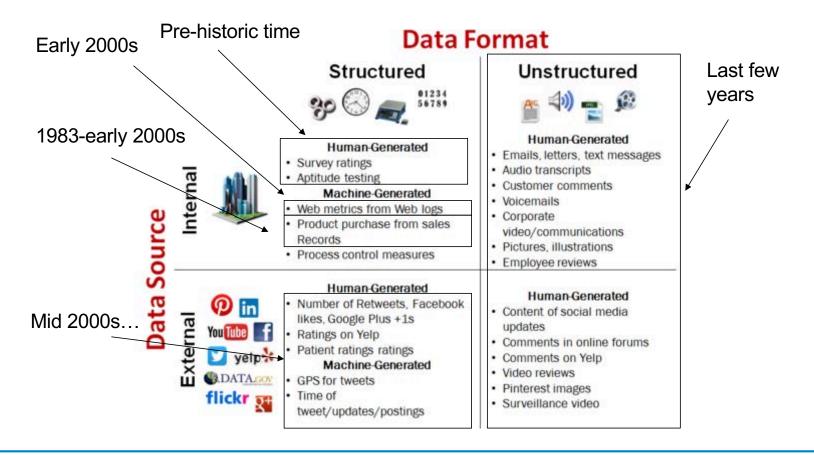




80-95% of all usable information for businesses is in the form of unstructured data*

Huge Amount of Text Data

- Online reviews
- Social media posts
- Texts
- Customer service calls
- Open-ended survey questions
- Firm annual reports
- Advertisements
- Newspaper articles
- Movie scripts
- Song lyrics
- How can we extract insight?



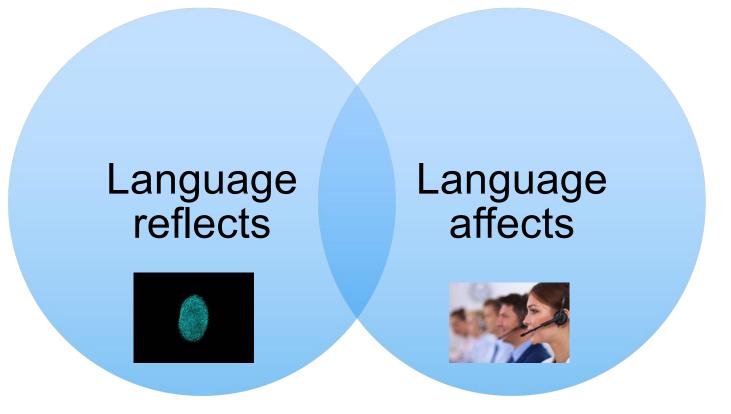
Text Generator

Textual Data Goes Beyond Social Media...

Text Recipient

	Consumers	Firms	Society
Consumers	Reviews, social Media	Call centers, chats	Online comments
Firms	Product information, ads	Internal e-mails, financial reports	Financial reports, interviews
Society	News, songs, movies	Business news (e.g., HBR)	Congressional discussions

Two Main Ways we Can Use Text Data



Textual Data Unites the Marketing Tribes

Consumer Behavior

Secondary data with a window into the why

Quantitative Marketing

Thousands of new predictors and the methodological challenges

Textual Data

Rich data on both firms and consumers

Consumer Culture

Finally can quantify CCT data

Uniting the Tribes: Using Text for Marketing Insight

Journal of Plankests
6-3
© American Plankests Association 2010
Article rouse guideline
stagenhousely curriate permas in
COL 10.1177/02/22/25/97710
poursels assigned a combinemely

Jonah Berger, Ashlee Humphreys, Stephan Ludwig, Wendy W. Moe, Oded Netzer, and David A. Schweidel

Extracting Hosts' Motivations from Text - Bringing Motivations to Marketing Science

Chung, Li, Johar, Netzer and Peterson, 2020

What Motivates People to Share their Home?

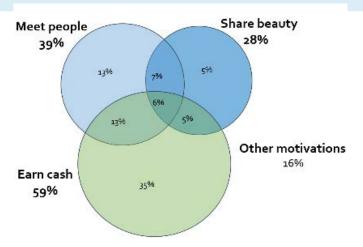


Q: "Why did you start hosting?"

"To earn extra cash"

"I wanted to meet new people from all around the world!"

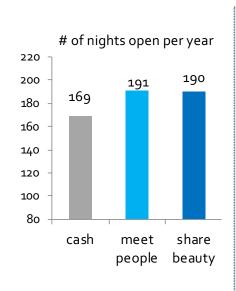
"To make a little <u>money</u> and <u>share the beauty</u> of this place with others for brief periods."

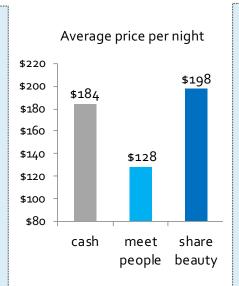


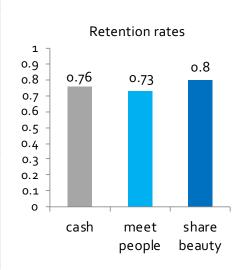
Data

Period	January, 2011 – October, 2015		
Hosts	25,290 individuals		
Observations	561,628 reservations		
Countries	143 countries		

Bringing Motivations to Marketing Science

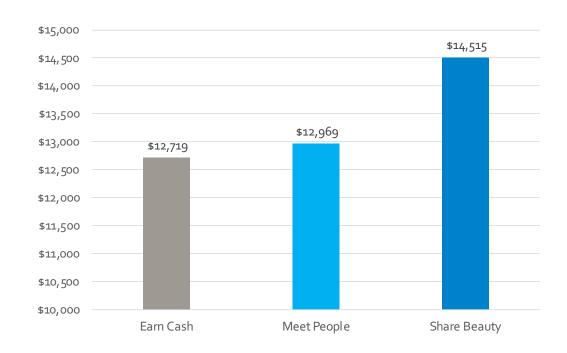






Customer Lifetime Value per motivation group

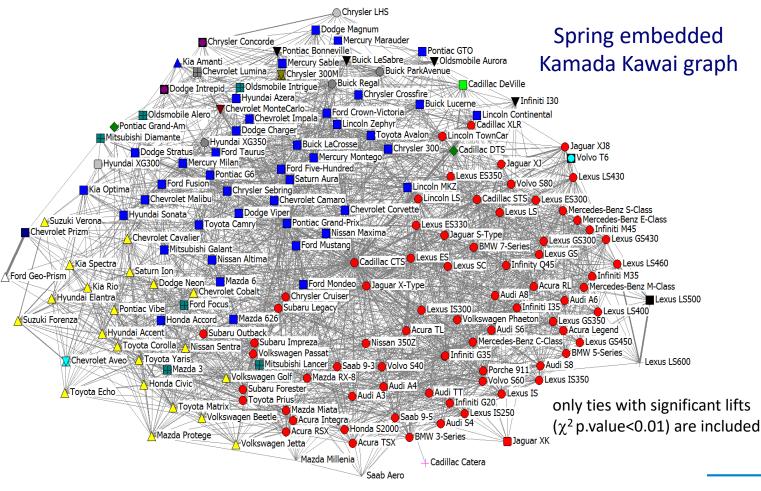
CLV per Individual Host by Motivations



Mine Your Own Business

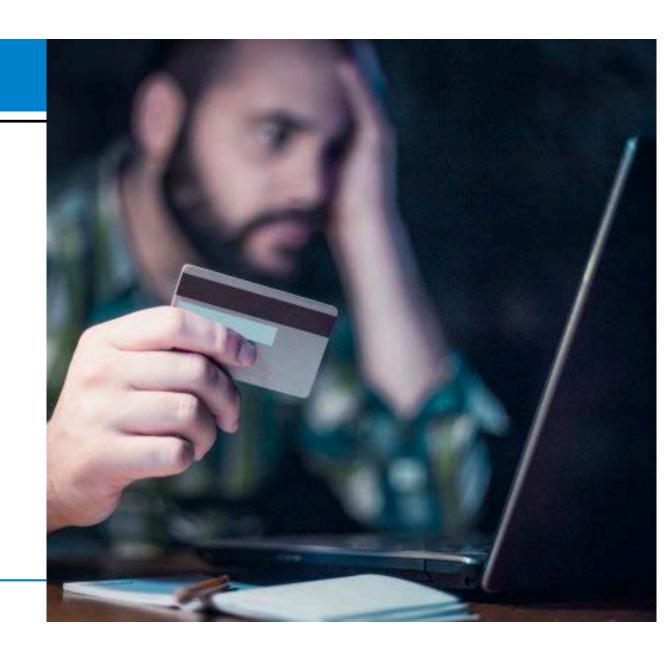
Netzer, Feldman, Goldenberg, Fresko 2012

The Car Market Competitive Landscape



Can Words Predict Default?

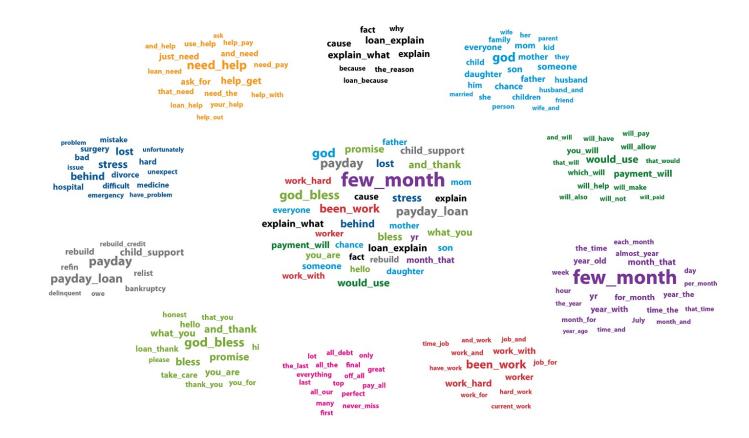
Netzer, Lemaire, Herzenstien 2019



Can Words Predict Default?

Can borrowers' loan application text—writing style and content—predict future repayment behavior?

- What is the **predictive** power of writing styles?
- Which words are predictive of default?
- What is the **writing style** that is most associated with default?



fact why cause loan_explain explain what explain because the_reason

rebuild credit rebuild child support payday_loan bankruptcy delinquent owe

that_will would_use that_would

Hardship & financial hardship

time_job and_work job_and work_and work_with have_work been_work job_for hard_work work_for current_work

why fact loan_explain cause explain_what explain

because the reason loan_because

problem mistake

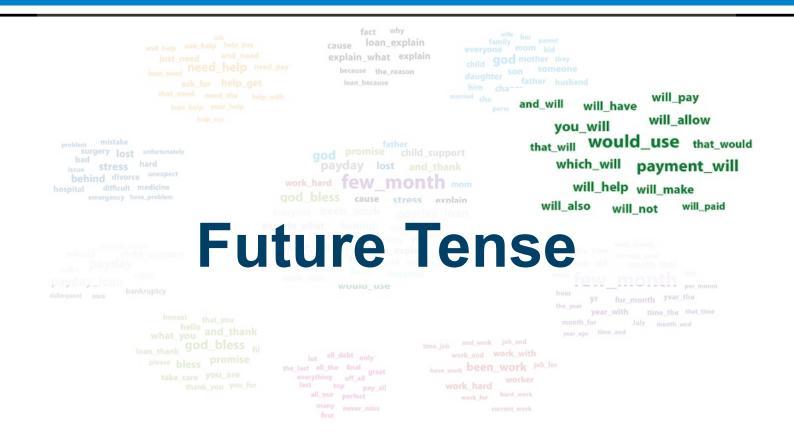
Explanation

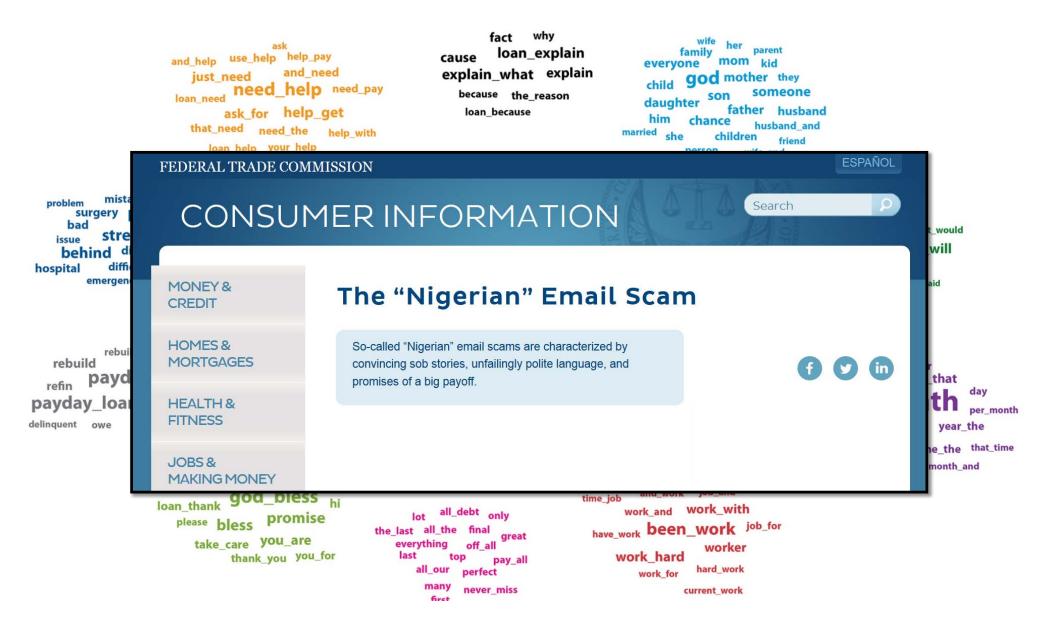
payment_will chance loan_explain son you_are fact rebuild month_that

lot all_debt only

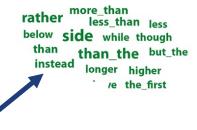
have work been_work job_for








```
college student
promote
       student_loan degree
  wedding
               gradua
      tuition
              university
```



Relative

```
card_that debt_have tax
      card have car_insur default
  the_bank
                           late_payment
  card debt
                          borrow car_loan
                          payment_for have_credit
                   lend
   card with
                   use_credit with_credit
debt_that the_cost
                 the_debt pay_for payment_the
the_credit spend
               loan_that
```

for_year august about month annual over_year three_year about_year year_have summer year_now month have two_year past_year year and next_year

```
college student
promote
       student_loan degree
  wedding
              gradua
      tuition
             university
```

```
more_than
rather
          less_than less
below side while though
        than the but_the
 instead longer higher
          'e the_first
```

Time

```
card_that debt_have tax
     card_have car_insur default
  the_bank all
                          late_payment
  card debt
                         borrow car_loan
                         payment_for have_credit
                   lend
   card with
debt_that the_cost use_credit with_credit
                 the_debt pay_for payment_the
the_credit spend
               loan_that
```



```
college student
promote
       student_loan degree
  wedding
              gradua
      tuition
             university
```

```
more_than
rather
          less_than less
below side while though
        than the but_the
 instead
         longer higher
          ve the_first
```

Debt

```
card_that debt_have tax
     card_have car_insur default
  the_bank
                          late_payment
 card debt
                         borrow car_loan
                         payment_for have_credit
                   lend
   card with
debt_that the_cost use_credit with_credit
                the_debt pay_for payment_the
the_credit spend
               loan_that
```

for_year august about month annual over_year three_year about_year year_have summer year_now month_have two_year past_year year and next_year

```
promote college student
student_loan degree
wedding gradu
tuition university
```

rather less_than less
below side while though
than than_the but_the
instead longer higher
'/e the_first

Brighter financial future

```
card_that debt_have tax

card_have car_insur default

the_bank all_bill late_payment
card_debt borrow car_loan

borrow car_loan

debt_that the_cost use_credit with_credit
the_credit spend the_debt pay_for payment_the
loan_that
```

about_month august
annual over_year three_year
about_year year_have summer
year_now month_have
two_year past_year year_and
next_year

Extraversion

Defaulting loan requests have writing styles of extraverts

- More religious and body words (god, bless, cloth, eye)
- More social and human words (we, family)
- More motion words (arrive, car, increase)
- Less negation words (not, never)
- Less insight words (think, know, consider)

Deception

Defaulting loan requests have traces of deception

- More present and future tense
- More social words (we rather than I)
- More motion words (arrive, car, increase)
- Longer text

Leveraging Text Mining for Idea Generation

Toubia, Netzer 2017

Leveraging Text Mining for Idea Generation

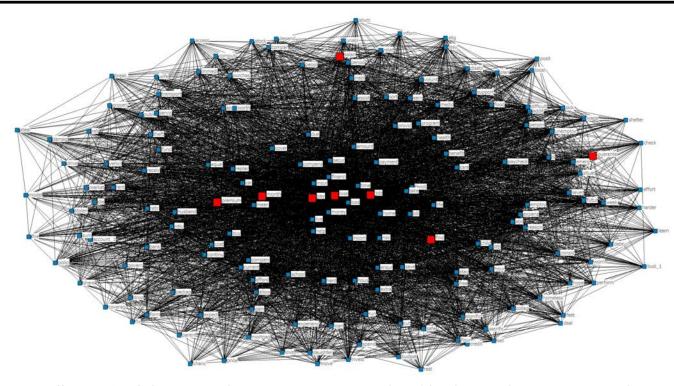
Balancing Novelty with Familiarity

"Truly useful creativity may reflect a balance between novelty and a connection to previous ideas" (Ward 1995)

Semantic subnetwork between concepts in an idea

- Concepts close to each other in the semantic network → familiarity
- Concepts far from each other in the semantic network→ novelty

Good Ideas Balance the Novel with the Familiar



Idea #201: "-LOSE Job -GET A guarantee of 70% of their former salary for 5 years if they cannot find a job that paid as much as they were making. -GIVE A premium every month based on their salary."

Utilizing Text Mining to Predict Label Change due to Adverse Drug Reactions

Feldman, Netzer, Peretz, Rosenfeld, 2015

2011 Label Change Statins and Cognitive Impairment

Co-mentions up to 2011

Top Extracted ADRs	Class	Class	Class	Class	Class	Class	Total
	1	2	3	4	5	6	
pain	12	4	12	20	11	453	512
muscle pain	9	0	14	37	9	374	443
flushing	2	0	0	2	180	16	200
heart attack	1	0	4	4	13	172	194
muscle damage	1	2	6	24	7	141	181
feeling weak	1	0	7	20	4	147	179
allergic reaction	3	2	2	8	21	101	137
liver failure	4	0	10	0	42	63	119
diabetes	6	2	2	5	17	78	110
cognitive impairment	1	0	4	2	2	95	104
leg pain	5	0	5	7	7	\mathcal{H}	101
muscle problems	2	1	2	8	2	57	72
infection	1	0	2	1	9	59	72
leg cramps	3	2	2	4	2	56	69
muscle weakness	0	2	6	3	0	56	67
cancer	2	0	0	4	4	54	64
head pain	5	2	4	4	10	30	55
heart problems	0	0	1	0	2	51	54
stroke	2	0	2	3	1	42	50
burning sensation	1	0	0	0	4	38	43
Total	61	17	85	156	347	2,160	2,826

2011 Label Change Statins and Cognitive Impairment

Lift up to 2011

Relation-Driven	1	2	3	4	5	6	1	2	3	4	5	6
Lift												
pain	1.1	1.3	8.0	0.7	0.2	1.2	0.1	0.3	0.0	0.0	0.0	50.3
muscle pain	0.9	0.0	1.1	1.5	0.2	1.1	0.0	0.0	0.0	8.1	0.0	18.6
flushing	0.5	0.0	0.0	0.2	7.3	0.1	0.0	0.0	0.0	0.0	1207.0	0.0
heart attack	0.2	0.0	0.7	0.4	0.5	1.2	0.0	0.0	0.0	0.0	0.0	17.3
muscle damage	0.3	1.8	1.1	2.4	0.3	1.0	0.0	8.0	0.1	22.2	0.0	0.2
feeling weak	0.3	0.0	1.3	2.0	0.2	1.1	0.0	0.0	0.5	11.7	0.0	3.4
allergic reaction	1.0	2.4	0.5	1.1	1.2	1.0	0.0	1.8	0.0	0.0	1.2	0.0
liver failure	1.6	0.0	2.8	0.0	2.9	0.7	0.9	0.0	12.4	0.0	61.1	0.0
diabetes	2.5	3.0	0.6	8.0	1.3	0.9	5.9	2.8	0.0	0.0	1.1	0.0
cognitive												
impairment	0.4	0.0	1.3	0.3	0.2	1.2	0.0	0.0	0.3	0.0	0.0	13.3
leg pain	2.3	0.0	1.6	1.3	0.6	1.0	3.9	0.0	1.4	0.4	0.0	0.0
muscle problems	1.3	2.3	0.9	2.0	0.2	1.0	0.1	8.0	0.0	4.4	0.0	0.3
infection	0.6	0.0	0.9	0.3	1.0	1.1	0.0	0.0	0.0	0.0	0.0	1.2
leg cramps	2.0	4.8	1.0	1.1	0.2	1.1	1.6	6.2	0.0	0.0	0.0	0.9
muscle weakness	0.0	5.0	3.0	8.0	0.0	1.1	0.0	6.5	8.3	0.0	0.0	1.9

Critical Values							
lift	chi-square value	p-value					
1.00	3.84	0.05					
	6.64	0.01					

How Early Could We Have Detected?

Year	Relation-	Chi-	Classic-	Chi-
	driven	square	induced	square
	lift	value	lift	value
2011	1.20	13.33	1.99	49.28
2010	1.21	13.24	1.94	42.21
2009	1.22	13.35	1.97	40.03
2008	1.21	10.70	1.89	31.42
2007	1.20	9.95	2.00	36.46
2006	1.21	10.30	1.89	28.20
2005	1.20	6.63	2.04	25.12
2004	1.25	3.46	2.18	12.93
2003	1.27	1.55	2.16	5.79

All values in bold are chi-square values are significant at the 0.05 level

Similar Results for Wellbutrin and Agitation

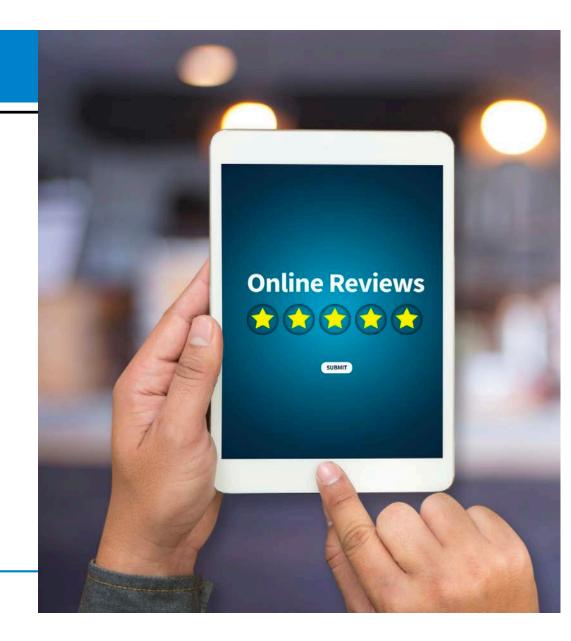
How early could we have detected it?

Year	Relation- driven lift	Chi- square value	Classic- induced lift	Chi- square value	
2008	1.70	29.53	1.81	28.79	
2007	1.75	28.70	1.83	26.97	
2006	1.72	21.13	1.61	12.91	
2005	1.69	16.54	1.78	15.90	
2004	1.46	5.13	1.51	5.13	
2003	1.64	8.03	2.05	13.99	
2002	1.78	6.41	2.36	12.25	

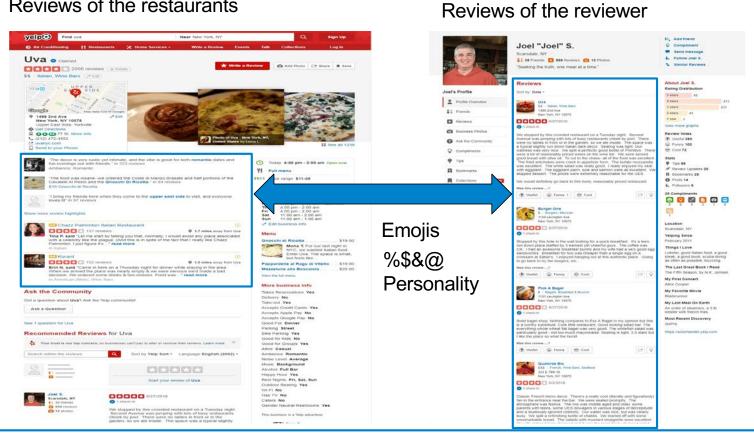
All values in bold are chi-square values are significant at the 0.05 level

Matching Linguistics of Reviewers and Products

Lemaire and Netzer 2020



Matching Linguistics of Reviewers and Products



Summary

- Most data out there are unstructured (it goes beyond social media data)
- Text can help uniting the tribes
- Every text has a generator and an audience
- Text reflects versus text affects
- Other sources of unstructured data (image, audio, video) can provide additional value
- Social media and other sources of textual data:
 - are very large and messy
 - keep coming in real time
 - can be extremely useful if we learn how to listen...

What's Next?

Oded Netzer

Columbia Business School

onetzer@gsb.columbia.edu

References

- Berger, Jonah, Ashlee Humpherys, Stephan Ludwig, Wendy Moe, Oded Netzer and David Schweidel (2020) "Uniting the Tribes, Using Text for Marketing Insights." Journal of Marketing 84(1), 1-25 http://www.columbia.edu/~on2110/Papers/Uniting%20The%20Tribes.pdf
- Oded Netzer, Alain Lemaire, Michal Herzenstein (2019) "When Words Sweat: Written Words Can Predict Loan Default." Journal of Marketing Research 56(6), 960-980 http://www.columbia.edu/~on2110/Papers/When%20Words%20Sweat1.pdf
- Toubia, Olivier and Oded Netzer (2017), "Idea Generation, Creativity, and Prototypicality." Marketing Science, 36 (1), 1-20 http://www.columbia.edu/~on2110/Papers/Toubia Oded 2017.pdf
- Feldman Ronen, Oded Netzer, Aviv Peretz, Binyamin Rosenfeld (2015) Utilizing Text Mining on Online Medical Forums to Predict Label Change Due to Adverse Drug Reactions, Proceedings of the 21st ACM SIGKDD International Conference of Knowledge Discovery and Data Mining, 1779-1788. https://dl.acm.org/doi/10.1145/2783258.2788608
- Netzer, Oded, Ronen Feldman, Jacob Goldenberg and Moshe Fresko (2012), "Mine Your Own Business: Market Structure Surveillance through Text Mining." Marketing Science, 31 (3), 521-543 http://www.columbia.edu/~on2110/Papers/Netzer Feldman Goldenberg Fresko 2012.pdf
- Jaeyeon Chung, Yanayn Li, Gita Johar Oded Netzer and Mathew Pearson (2020) "Mining Consumer Minds: The Downstream Consequences of Airbnb **Host Motivations.**"
- Lemaire, Alain and Oded Netzer (2020) "Linguistic-Based Recommendation: The Role of Linguistic Match Between Users and Products."